已知函數(shù)f(x)=
f1(x);x∈[0,
1
2
)
f2(x);x∈[
1
2
,1]
.其中f1(x)=1-2(x-
1
2
)2f2(x)=-2x+2

(1)求函數(shù)的最大值和最小值
(2)若x0∈[0,
1
2
),x1=f(x0),f(x1)=x0
,求x0的值.
分析:(1)由分段函數(shù)的特點,分別代入可得取值范圍,綜合可得;
(2)由x0的范圍,選擇解析式可得x1,再由x1的范圍可選解析式,代入可得x0的方程,解之即可.
解答:解:(1)當(dāng)x∈[0,
1
2
)時,f(x)=1-2(x-
1
2
)2
[0,
1
2
)
上增,∴
1
2
≤f(x)<1
,
而當(dāng)x∈[
1
2
,1]
時,f(x)=-2x+2減,∴0≤f(x)≤1
綜上可得:f(x)的最大值為1,最小值為0;
(2)x0∈[0,
1
2
),x1=f(x0)=1-2(x0-
1
2
)2
,
由上得x1∈[
1
2
,1)
,∴f(x1)=-2x1+2=2-2[1-2(x0-
1
2
)2]=x0
,
整理可得4x02-5x0+1=0,解得x0=1或x0=
1
4

由條件得x0=
1
4
即為所求.
點評:本題考查分段函數(shù)的最值問題,分段代入是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時,f(x)<0,且f(x•y)=f(x)+f(y).
(Ⅰ)證明f(x)在定義域上是減函數(shù);
(Ⅱ)如果f(
3
3
)=1
,求滿足不等式f(x)-f(
1
x-2
)≥-2
的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
12
ax2
+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x0,y0)為AB的中點,記AB兩點連線斜率為K,證明:f′(x0)≠K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),當(dāng)x、y∈R時,恒有f(x)-f(y)=f(x-y).
(Ⅰ)求證:f(x)是奇函數(shù);
(Ⅱ)如果x<0時,f(x)>0,并且f(2)=-1,試求f(x)在區(qū)間[-2,6]上的最值;
(Ⅲ)在(Ⅱ)的條件下,對任意x∈[-2,6],不等式f(x)>m2+am-5對任意a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南模擬 題型:解答題

已知函數(shù)f(x)=lnx-
1
2
ax2
+bx(a>0)且f′(1)=0,
(1)試用含a的式子表示b,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知A(x1,y1),B(x2,y2)(0<x1<x2)為函數(shù)f(x)圖象上不同兩點,G(x0,y0)為AB的中點,記AB兩點連線斜率為K,證明:f′(x0)≠K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)f(x)=xlnx.

(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;

(2)當(dāng)b>0時,求證:bb(其中e=2.718 28…是自然對數(shù)的底數(shù));

(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).

(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且mn,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).

(1)求和c的值.

(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).

(3)當(dāng)a=2時,設(shè)0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.

查看答案和解析>>

同步練習(xí)冊答案