17.甲、乙兩人進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿(mǎn)8局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>$\frac{1}{2}$),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為$\frac{5}{8}$.
(Ⅰ)求p的值;
(Ⅱ)設(shè)ξ表示比賽停止時(shí)比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

分析 (Ⅰ)由題意可知,當(dāng)甲連勝2局或乙連勝2局時(shí),第二局比賽結(jié)束時(shí)比賽停止,再由互斥事件的概率及相互獨(dú)立事件的概率列式求p的值;
(Ⅱ)求出ξ的所有可能取值,得到ξ取不同值時(shí)的概率,得到分布列,代入期望公式求期望.

解答 解:(Ⅰ)當(dāng)甲連勝2局或乙連勝2局時(shí),第二局比賽結(jié)束時(shí)比賽停止,
故${p}^{2}+(1-p)^{2}=\frac{5}{8}$,解得p=$\frac{1}{4}$或p=$\frac{3}{4}$.
又p$>\frac{1}{2}$,∴p=$\frac{3}{4}$;
(Ⅱ)依題意知,ξ的所有可能取值為2,4,6,8.
p(ξ=2)=$\frac{5}{8}$;
p(ξ=4)=$(1-\frac{5}{8})×\frac{5}{8}=\frac{15}{64}$;
p(ξ=6)=$(1-\frac{5}{8})^{2}×\frac{5}{8}=\frac{45}{512}$;
p(ξ=8)=$(1-\frac{5}{8})^{3}=\frac{27}{512}$.
∴隨機(jī)變量ξ的分布列為:

 ξ 2 4 6 8
 p $\frac{5}{8}$ $\frac{15}{64}$ $\frac{45}{512}$ $\frac{27}{512}$
Eξ=2×$\frac{5}{8}+4×\frac{15}{64}+6×\frac{45}{512}+8×\frac{27}{512}$=$\frac{803}{256}$.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的期望與方差,訓(xùn)練了獨(dú)立事件概率的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為( 。
A.80+16$\sqrt{2}$+16$\sqrt{3}$B.80+12$\sqrt{2}$+16$\sqrt{3}$C.80+16$\sqrt{2}$+12$\sqrt{3}$D.80+12$\sqrt{2}$+12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.用數(shù)學(xué)歸納法證明“2n>n2,對(duì)于n≥n0的正整數(shù)n均成立”時(shí),第一步證明中的起始值n0的最小值為(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知定義在R上的函數(shù)f(x)=asinωx+bcosωx(ω>0)的周期為π,且對(duì)一切x∈R,都有f(x)≤f($\frac{π}{12}$)=8.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若g(x)=f($\frac{π}{6}$-x),求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)標(biāo)有不同編號(hào)的形狀大小完全一樣的5件正品和3件次品進(jìn)行檢測(cè),現(xiàn)不放回地依次取出2件,則在第一次取出正品的條件下,第二次也取出正品的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{5}{14}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.隨機(jī)地從[-1,1]中任取兩個(gè)數(shù)x,y,則事件“y<sin$\frac{π}{2}$x”發(fā)生的概率為$\frac{1}{π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在三棱錐A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,點(diǎn)E是線(xiàn)段AD的中點(diǎn).
(Ⅰ)如果CD=$\sqrt{2}$,求證:平面BCE⊥平面ABD;
(Ⅱ)如果∠CBD=$\frac{2π}{3}$,求直線(xiàn)CE和平面BCD所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示,AB=AC=1,DC=2BD,DE=EA,cos∠BAC=$\frac{1}{3}$,則BE=( 。
A.$\frac{59}{108}$B.$\frac{43}{108}$C.$\frac{\sqrt{177}}{18}$D.$\frac{\sqrt{129}}{18}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知點(diǎn)F(0,1)為拋物線(xiàn)x2=2py的焦點(diǎn).
(1)求拋物線(xiàn)C的方程;
(2)點(diǎn)A、B、C是拋物線(xiàn)上三點(diǎn)且$\overrightarrow{FA}$+$\overrightarrow{FB}$+$\overrightarrow{FC}$=$\overrightarrow{0}$,求△ABF面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案