【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
【答案】
(1)證明:∵四邊形ABCD是菱形,∴AC⊥BD,
∵BE⊥平面ABCD,∴BE⊥AC,
∴AC⊥平面BEFD,
∵AC平面ACF,∴平面ACF⊥平面BEFD
(2)解:設(shè)AC與BD的交點為O,由(1)得AC⊥BD,
分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,
∵BE⊥平面ABCD,∴BE⊥BD,
∵DF∥BE,∴DF⊥BD,
∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2 .
設(shè)OA=a,(a>0),
由題設(shè)得A(a,0,0),C(﹣a,0,0),E(0, ),F(xiàn)(0,﹣ ,2),
設(shè)m=(x,y,z)是平面AEF的法向量,
則 ,取z=2 ,得 =( ),
設(shè) 是平面CEF的一個法向量,
則 ,取 ,得 =(﹣ ,1,2 ),
∵二面角A﹣EF﹣C是直二面角,
∴ =﹣ +9=0,解得a= ,
∵BE⊥平面ABCD,
∴∠BAE是直線AE與平面ABCD所成的角,
∴AB= =2,∴tan .
∴直線AE與平面ABCD所成角的正切值為 .
【解析】(1)推導(dǎo)出AC⊥BD,BE⊥AC,從而AC⊥平面BEFD,由此能證明平面ACF⊥平面BEFD.(2)設(shè)AC與BD的交點為O,分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面ABCD所成角的正切值.
【考點精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy,直線l的參數(shù)方程是 (t為參數(shù)).在以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系中,曲線C:ρ=4sinθ.
(1)當(dāng)m=﹣1,α=30°時,判斷直線l與曲線C的位置關(guān)系;
(2)當(dāng)m=1時,若直線與曲l線C相交于A,B兩點,設(shè)P(1,0),且||PA|﹣|PB||=1,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)當(dāng)a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+ax﹣ (a∈R)在x=2處的切線經(jīng)過點(﹣4,2ln2)
(1)討論函數(shù)f(x)的單調(diào)性
(2)若不等式 恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點,點P沿著邊BC,CD與DA運動,記BOP=x,將動點P到A,B兩點距離之和表示為x的函數(shù)f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點,圓O與△ABC的底邊BC交于M,N兩點,與底邊上的高交于點G,且與AB,AC分別相切于E,F兩點.
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了20個用戶,得到用戶對產(chǎn)品的滿意度平分如下:
A地區(qū):62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地區(qū):73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(1)(I)根據(jù)兩組數(shù)據(jù)完成兩地區(qū)用戶滿意度評分的莖葉圖,并通過莖葉圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,得出結(jié)論即可)
(2)(II)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:
|
|
|
|
|
|
|
|
記時間C:“A地區(qū)用戶的滿意度等級高于B地區(qū)用戶的滿意度等級”,假設(shè)兩地區(qū)用戶的評價結(jié)果相互獨立。根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,求C的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N.
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點處(不需說明理由)
(2)證明:直線MN∥平面BDH。
(3)求二面角A-EG-M的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com