已知實數(shù)x,y滿足不等式組
x-2y+2≥0
y≥|x|
,則
y+1
x+2
的取值范圍是( 。
A、(-1,-2]
B、[
3
4
,
5
4
]
C、[
2
3
,∞)
D、[
1
2
,
5
4
]
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用斜率的幾何意義即可得到結(jié)論.
解答: 解:設(shè)k=
y+1
x+2
,則k的幾何意義為區(qū)域內(nèi)的點(diǎn)(x,y)到定點(diǎn)D(-2,-1)的斜率,
作出不等式組對應(yīng)的平面區(qū)域如圖,
由圖象可知AD的斜率最大,
∵O,B,D,三點(diǎn)共線,
∴OD的斜率最小,即最小值為k=
1
2
,
y=-x
x-2y+2=0
,解得
x=-
2
3
y=
2
3
,即A(-
2
3
,
2
3
),
則AD的斜率k=
2
3
+1
-
2
3
+2
=
5
4
,
1
2
≤k≤
5
4
,
故選:D
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合以及直線斜率的幾何意義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某籃球隊甲、乙兩名運(yùn)動員練習(xí)罰球,每人練習(xí)10輪每輪罰球30個.命中個數(shù)的莖葉圖如圖.若10輪中甲、乙的平均水平相同,則乙的莖葉圖中x的值是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線的準(zhǔn)線l的方程是y=l,且拋物線恒過點(diǎn)P(1,一1),則拋物線焦點(diǎn)弦PQ的另一個端點(diǎn)Q的軌跡方程是( 。
A、(x-1)2=-8(y-1)
B、(x一1)2=-8(y-1)(x≠1)
C、(y一1)2=8(x一1)
D、(y一1)2=8(x一1)(x≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)安排甲、乙等5名同學(xué)去參加3個運(yùn)動項目,要求每個項目都有人參加,每人只參加一個項目,則滿足上述要求且甲、乙兩人不參加同一個項目的安排方法種數(shù)為( 。
A、114B、162
C、108D、132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為3的等邊三角形ABC中,點(diǎn)P在邊AB上,
AP
PB
PA
PC
=1,則實數(shù)λ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是一條連續(xù)不斷地曲線,且有部分對應(yīng)值如表所示,那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是(  )
x123
f(x)-
3
2
-1
3
2
A、(-∞,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩個焦點(diǎn)為F1,F(xiàn)2,A為橢圓上一點(diǎn),AF1⊥AF2,∠AF2F1=60°,求該橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l和平面α,無論直線l與平面α具有怎樣的位置關(guān)系,在平面α內(nèi)總存在一條直線與直線l( 。
A、相交B、平行C、垂直D、異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,若a4+a6+a8+a10+a12=60,則S15的值為
 

查看答案和解析>>

同步練習(xí)冊答案