【題目】已知偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(1)=0,則滿足f(log x)>0的x的取值范圍是(
A.(0,+∞)
B.(0, )∪(2,+∞)
C.(0,
D.(0, )∪(1,2)

【答案】B
【解析】解:∵f(x)是R上的偶函數(shù),且在[0,+∞)上是增函數(shù),又f(1)=0,

∴不等式f(log x)>0等價(jià)為f(|log x|)>f(1),

即|log x|>1,

則log x>1或log x<﹣1,

解得0<x<2或x

故選:B.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是( )
A.y=x與
B.y=x與
C.y=2lgx與y=lgx2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,利用定義證明:
(1)f(x)為奇函數(shù);
(2)f(x)在 ,+∞)上是增加的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,過橢圓M: (a>b>0)右焦點(diǎn)的直線x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為 . (Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα= ,且α∈( ,π).
(1)求tan(α+ )的值;
(2)若β∈(0, ),且cos(α﹣β)= ,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(diǎn)(0,1)且被x軸分成的兩段圓弧長之比為1:2,過點(diǎn)H(0,t)的直線l于圓C相交于M、N兩點(diǎn),且以MN為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.

(1)求圓C的方程;
(2)當(dāng)t=1時(shí),求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分組的頻率分布直方圖如圖.

(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,[220,240),[240,260),[260,280),[280,300)的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

同步練習(xí)冊(cè)答案