A. | (1,+∞) | B. | $(0,\frac{3}{4})$ | C. | $[\frac{3}{4},\frac{4}{3})$ | D. | $[\frac{3}{4},+∞)$ |
分析 先求解一元二次不等式化簡集合M,N,然后分析集合B的左端點(diǎn)的大致位置,結(jié)合M∩N中恰含有一個(gè)整數(shù)得集合B的右端點(diǎn)的范圍,列出無理不等式組后進(jìn)行求解.
解答 解:由x2+2x-3>0,得:x<-3或x>1.
由x2-2ax-1≤0,得:a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$.
所以,N={x|x2+2x-3>0}={x|x<-3或x>1},
M={x|x2-2ax-1≤0,a>0}={x|a-$\sqrt{{a}^{2}+1}$≤x≤a+$\sqrt{{a}^{2}+1}$}.
因?yàn)閍>0,所以a+1>$\sqrt{{a}^{2}+1}$,則a-$\sqrt{{a}^{2}-1}$>-1且小于0.
由M∩N中恰含有一個(gè)整數(shù),所以2≤a+$\sqrt{{a}^{2}+1}$<3.
即$\left\{\begin{array}{l}{a+\sqrt{{a}^{2}+1}≥2}\\{a+\sqrt{{a}^{2}+1}<3}\end{array}\right.$,.
解得$\frac{3}{4}$≤a<$\frac{4}{3}$.
所以,滿足A∩B中恰含有一個(gè)整數(shù)的實(shí)數(shù)a的取值范圍是[$\frac{3}{4}$,$\frac{4}{3}$).
故選C.
點(diǎn)評 本題考查了交集及其運(yùn)算,考查了數(shù)學(xué)轉(zhuǎn)化思想,訓(xùn)練了無理不等式的解法,求解無理不等式是該題的一個(gè)難點(diǎn).此題屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值為-$\frac{1}{2}$ | B. | 最小值為-$\frac{1}{2}$ | C. | 最大值為1 | D. | 最小值為1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com