在下列各數(shù)中,最大的數(shù)是( 。
A、85(9)
B、210(5)
C、68(8)
D、11111(2)
考點(diǎn):進(jìn)位制
專(zhuān)題:算法和程序框圖
分析:欲找四個(gè)中最大的數(shù),先將它們分別化成十進(jìn)制數(shù),后再比較它們的大小即可.
解答: 解:85(9)=8×9+5=77;
210(5)=2×52+1×5=55;
68(8)=6×8+8=56;
11111(2)=24+23+22+21+20=31.
故85(9)最大,
故選:A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是算法的概念,由n進(jìn)制轉(zhuǎn)化為十進(jìn)制的方法,我們只要依次累加各位數(shù)字上的數(shù)×該數(shù)位的權(quán)重,即可得到結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)個(gè)為Sn,且Sn=2an-2(n=1,2,…).
(Ⅰ)寫(xiě)出a1,a2的值,并求出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足bn+1=bn+an(n=1,2,…),b1=1,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為4,其長(zhǎng)軸長(zhǎng)和短軸長(zhǎng)之比為
3
:1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的右焦點(diǎn),T為直線x=t(t∈R,t≠2)上縱坐標(biāo)不為0的任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.
(。┤鬙T平分線段PQ(其中O為坐標(biāo)原點(diǎn)),求t的值;
(ⅱ)在(。┑臈l件下,當(dāng)
|TF|
|PQ|
最小時(shí),求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=loga
x-2a
x+2a
(a>0,a≠1)
(1)若a=2,求f(x)的定義域和值域;
(2)若函數(shù)的定義域?yàn)閇s,t],則函數(shù)的值域?yàn)閇loga(t-a),loga(s-a)],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M的坐標(biāo)(x,y)滿足不等式組
x≥0
y≥0
x+2y≤6
3x+y≤12
,則x-y的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?的ABCD頂點(diǎn)A,B,C的坐標(biāo)分別為(-2,1),(-1,3),(3,4),則頂點(diǎn)D的坐標(biāo)為(  )
A、(4,6)
B、(2,2)
C、(0,0)
D、(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxsin(
π
2
-x)+sin2x-1.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a=20.2,b=log4(3.2),c=log2(0.5),則( 。
A、a>b>c
B、b>a>c
C、c>a>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|-1<x<2},集合N={x|1<x<3},則M∪N=(  )
A、{x|-1<x<3}
B、{x|-1<x<2}
C、{x|1<x<3}
D、{x|1<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案