已知:集合A={x|x≤-3,或x≥-1},B={x|2m<x<m-1,m∈R}.若A∪B=A,求實(shí)數(shù)m的取值范圍.
考點(diǎn):并集及其運(yùn)算
專題:集合
分析:由A∪B=A說(shuō)明集合B是集合A的子集,當(dāng)集合B是空集時(shí),符合題目條件,求出此時(shí)的a的范圍,當(dāng)B不是空集時(shí),由兩集合端點(diǎn)值之間的關(guān)系列不等式組求出m的范圍,最后把兩種情況求出的m的范圍取并集即可.
解答: 解 因?yàn)锳∪B=A,
所以B⊆A,
所以B可以是∅,此時(shí)2m>m-1,即m>-1
當(dāng)B≠∅時(shí),則m≤-1,
要使B⊆A,
所以m-1<-3或2m>-1,即m<-2或m>-
1
2

綜上所述a的取值范圍是m<-2或m>-
1
2
點(diǎn)評(píng):本題考查了并集及其運(yùn)算,考查了集合之間的關(guān)系,考查了分類討論的數(shù)學(xué)思想,解答此題的關(guān)鍵是由集合之間的關(guān)系得出它們的端點(diǎn)值之間的關(guān)系,是基礎(chǔ)題也是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)倉(cāng)庫(kù)里堆積著正方體的貨箱若干,要搬運(yùn)這些箱子很困難,可是倉(cāng)庫(kù)管理員要清點(diǎn)一下箱子的數(shù)量,于是就想出一個(gè)辦法:將這堆貨物的三視圖畫(huà)了出來(lái),你能根據(jù)三視圖,幫他清點(diǎn)一下箱子的數(shù)量嗎?這些正方體貨箱的個(gè)數(shù)為( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C分別是邊a,b,c所對(duì)應(yīng)的角,且cosA=
4
5

(Ⅰ)求sin2
A+B
2
+cos2A的值;
(Ⅱ)若a=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(
π
2
-ωx)(ω>0)任意兩個(gè)零點(diǎn)之間的最小距離為
π
2

(Ⅰ)若f(α)=
1
2
,α∈[-π,π],求α的取值集合;
(Ⅱ)求函數(shù)y=f(x)-cos(ωx+
π
3
)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|
1
x
≤1},N={x|y=lg(1-x)},則下列關(guān)系中正確的是(  )
A、(∁RM)∩N=∅
B、M∪N=R
C、M?N
D、(∁RM)∪N=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知 f(x)=
3
2
sin2x+
1
2
cos2x+
3
2

(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間
(2)函數(shù)f(x)的圖象可由函數(shù)y=sin2x的圖象經(jīng)過(guò)怎樣的變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sinα=
4
3
7
,cos(α+β)=-
11
14
,且α,β是銳角,則β等于( 。
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2-2x,x≥0
x2+ax,x<0
為偶函數(shù),則y=loga(x2-4x-5)的單調(diào)遞增區(qū)間為(  )
A、(-∞,-1)
B、(-∞,2)
C、(2,+∞)
D、(5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02的值;
(2)已知a
1
2
+a-
1
2
=3
,求a+a-1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案