12.($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{8\sqrt{3}}{9}$.

分析 利用指數(shù)、對數(shù)的性質(zhì)、運(yùn)算法則求解.

解答 解:($\frac{64}{27}$)${\;}^{\frac{1}{2}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$
=$\frac{8}{3\sqrt{3}}$+$lo{g}_{3}(\frac{10}{9}×\frac{9}{10})$
=$\frac{8\sqrt{3}}{9}$.
故答案為:$\frac{8\sqrt{3}}{9}$.

點(diǎn)評 本題考查指數(shù)式化簡求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)、對數(shù)的性質(zhì)、運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,四棱錐P-ABCD的底面為一直角梯形,BC⊥CD,CD⊥AD,AD=2BC,PC⊥底面ABCD,E為PA的中點(diǎn).
(1)證明:EB∥平面PCD; 
(2)若PC=CD,證明:BE⊥平面PDA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知F是雙曲線$C:{x^2}-\frac{y^2}{8}=1$的右焦點(diǎn),P是C左支上一點(diǎn),$A({0,6\sqrt{6}})$,當(dāng)△APF周長最小時(shí),點(diǎn)P的縱坐標(biāo)為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在銳角三角形ABC中,內(nèi)角A,B,C的對邊分別為a,b,c.且2sinB(ccosB+bcosC)=$\sqrt{3}$b
(1)求角A的大小
(2)若a=b,b+c=8,求△ABC的面積
(3)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=a+$\frac{2}{{2}^{x}-1}$(a∈R)是奇函數(shù)
(1)利用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上是減函數(shù);
(2)若f(|x|)>k+log2$\frac{m}{2}$•log2$\frac{4}{m}$對任意的m∈(0,+∞)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex,x∈R.
(1)求f(x)的圖象在點(diǎn)(0,f(0))處的切線方程;
(2)證明:曲線y=f(x)與直線y=ex有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{lnx,x>0}\\{{a^x},x≤0}\end{array}}\right.$(a>0,a≠1).若f(e2)=f(-2),則實(shí)數(shù)a=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等差數(shù)列中,a9=3,則此數(shù)列前17項(xiàng)和等于(  )
A.51B.34C.102D.不能確定

查看答案和解析>>

同步練習(xí)冊答案