精英家教網 > 高中數學 > 題目詳情

如圖所示,求圖中曲邊梯形的面積.(只要求寫出極限形式)

答案:略
解析:

(1)分割:如圖所示,將區(qū)間[a,b]任意分割成n個小區(qū)間,其分點記為:,…,,,.即,每個區(qū)間記為

(2)近似代替:在每個小區(qū)間上任取一點,記為,并記

以小區(qū)間長度為底,為高的小矩形面積為,設小曲邊梯形面積為,

則有

(3)求和:將所有n個小矩形面積加起來,得

.       ①

(4)取極限:如果分點的數目無限增多,且每個小區(qū)間的長度趨近于零時,和式①的極限存在,則和式①的極限就是所求曲邊梯形的面積S


提示:

解析:利用無限逼近的思想先分割,用小矩形面積近似代替曲邊梯形面積,分割越細,所求的近似值就越接近于曲邊梯形面積的真實值,通過求極限,就可以得到所求面積的真實值,這種方法稱之為微分法.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網精英家教網如圖1,OA,OB是某地一個湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個跨越水面的三角形觀光平臺MGK.建立如圖2所示的直角坐標系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設點M的坐標為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度
(1)求z的取值范圍;
(2)試寫出三角形觀光平臺MGK面積S△MGK關于z的函數解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南師大附中高三(下)第八次月考數學試卷(理科)(解析版) 題型:解答題

如圖1,OA,OB是某地一個湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個跨越水面的三角形觀光平臺MGK.建立如圖2所示的直角坐標系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設點M的坐標為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度
(1)求z的取值范圍;
(2)試寫出三角形觀光平臺MGK面積S△MGK關于z的函數解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數學 來源:《三角函數》2013年高三一輪復習單元訓練(北京師范大學附中)(解析版) 題型:解答題

如圖1,OA,OB是某地一個湖泊的兩條互相垂直的湖堤,線段CD和曲線段EF分別是湖泊中的一座棧橋和一條防波堤.為觀光旅游的需要,擬過棧橋CD上某點M分別修建與OA,OB平行的棧橋MG、MK,且以MG、MK為邊建一個跨越水面的三角形觀光平臺MGK.建立如圖2所示的直角坐標系,測得線段CD的方程是x+2y=20(0≤x≤20),曲線段EF的方程是xy=200(5≤x≤40),設點M的坐標為(s,t),記z=s•t.(題中所涉及的長度單位均為米,棧橋和防波堤都不計寬度
(1)求z的取值范圍;
(2)試寫出三角形觀光平臺MGK面積S△MGK關于z的函數解析式,并求出該面積的最小值.

查看答案和解析>>

科目:高中數學 來源:同步題 題型:解答題

如圖所示,求圖中曲邊梯形的面積。(只要求寫出極限形式)

查看答案和解析>>

同步練習冊答案