已知數(shù)列{an}的各項均為正數(shù),Sn為其前項和,對于任意n∈N*的滿足關(guān)系式2Sn=3an-3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}的通項公式是bn=
1
log3anlog3an+1
,前項和為Tn,求Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由2Sn=3an-3,可得當n≥2時,2an=2Sn-2Sn-1,化為an=3an-1,當n=1時,2a1=2S1=3a1-3,解得a1=3.利用等比數(shù)列的通項公式即可得出.
(2)bn=
1
log3anlog3an+1
=
1
n(n+1)
=
1
n
-
1
n+1
,利用“裂項求和”即可得出.
解答: 解:(1)∵2Sn=3an-3,∴當n≥2時,2an=2Sn-2Sn-1=(3an-3)-(3an-1-3),化為an=3an-1,
當n=1時,2a1=2S1=3a1-3,解得a1=3.∴數(shù)列{an}是等比數(shù)列,∴an=3n
(2)bn=
1
log3anlog3an+1
=
1
n(n+1)
=
1
n
-
1
n+1

其前項和為Tn=(1-
1
2
)+(
1
2
-
1
3
)
+…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1
點評:本題考查了遞推式的應(yīng)用、等比數(shù)列的通項公式、對數(shù)的運算性質(zhì)、“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=3,a2=2,當n≥2時,an+1是an•an-1的個位數(shù),則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,由曲線y=sinx,直線x=
3
2
π與x軸圍成的陰影部分的面積是( 。
A、1
B、2
C、2
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-a-x(a>1)若△ABC是銳角三角形,則一定成立的是( 。
A、f(sinA)>f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(cosA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了估計魚塘中魚的尾數(shù),先從魚塘中捕出2000尾魚,并給每條尾魚做上標記(不影響存活),然后放回魚塘,經(jīng)過適當?shù)臅r機,再從魚塘中捕出600尾魚,其中有標記的魚為40尾,根據(jù)上述數(shù)據(jù)估計該魚塘中魚的尾數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=-
1
2
n2+kn(k∈NΦ),且Sn的最大值為8,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3
a
-2
b
=(-2,0,4),
c
=(-2,1,2),|
b
|=4,θ為向量
b
c
的夾角.
(1)當
a
?
c
=2時,求θ的值; 
(2)設(shè)
a
?
c
=m,m∈R,m為何值時,θ的值最大?此時
b
的坐標為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,a、b、c分別為A、B、C的對邊,
3
c=2asin(A+B),f(
B
2
)=-1,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a>0,那么a+
1
a
+2
的最小值為( 。
A、2
B、2
2
C、3
D、4

查看答案和解析>>

同步練習(xí)冊答案