定義在上的函數(shù)同時滿足以下條件:
① 在上是減函數(shù),在上是增函數(shù);
② 是偶函數(shù);
③ 在處的切線與直線垂直.
(I)求函數(shù)的解析式;
(II)設,若存在,使,求實數(shù)的取值范圍.
(I);(II)
【解析】
試題分析:(I),由①得:;由②得:;由③得:
解得:;故
(II)由(I)知:;由得:存在,使得有解
即;令,即,
令,得或故在上單調(diào)遞增,在上單調(diào)遞減;
;故;所以
考點:導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的性質(zhì)。
點評:典型題,在給定區(qū)間,導數(shù)非負,函數(shù)為增函數(shù),導數(shù)非正,函數(shù)為減函數(shù)。涉及“不等式恒成立”問題,往往通過構(gòu)造函數(shù),轉(zhuǎn)化成求函數(shù)的最值問題,利用導數(shù)加以解決。
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)已知定義在上的函數(shù)同時滿足:①對任意,都有②當時,,試解決下列問題: (Ⅰ)求在時,的表達式;(Ⅱ)若關于的方程在上有實數(shù)解,求實數(shù)的取值范圍;(Ⅲ)若對任意,關于的不等式都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
定義在上的函數(shù)同時滿足以下條件:
①在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
③在處的切線與直線垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年遼寧省五校協(xié)作體高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題
定義在上的函數(shù)同時滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)=的解析式;
(2)設g(x)=,若存在實數(shù)x∈[1,e],使<,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省高三第三階段(12月)文科考試數(shù)學試卷(解析版) 題型:解答題
(滿分14分) 定義在上的函數(shù)同時滿足以下條件:
①在上是減函數(shù),在上是增函數(shù);②是偶函數(shù);
③在處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設,求函數(shù)在上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年安徽省淮北市高三4月第二次模擬理科數(shù)學試卷(解析版) 題型:解答題
定義在上的函數(shù)同時滿足以下條件:
① 在上是減函數(shù),在上是增函數(shù);② 是偶函數(shù);③ 在處的切線與直線垂直.
(1)求函數(shù)的解析式;
(2)設,若存在,使,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com