設(shè)函數(shù)f(x)=x2+aln(x+1)有兩個極值點(diǎn)x1,x2,且x1<x2.
(1)求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=時,判斷方程f(x)=-的實(shí)數(shù)根的個數(shù),并說明理由.
(1)0<a<(2)方程f(x)=-有且只有一個實(shí)數(shù)根
(1)由f(x)=x2+aln(x+1),可得f′(x)=2x+ (x>-1).
令g(x)=2x2+2x+a(x>-1),則其對稱軸為x=-.由題意可知x1,x2是方程g(x)=0的兩個均大于-1的不相等的實(shí)數(shù)根,其充要條件為解得0<a< .
(2)由a=可知x1=-,x2=-,從而易知函數(shù)y=f(x)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
①由y=f(x)在上單調(diào)遞增,且f·lnln 2>-,以及f·ln=-<-,故方程f(x)=-有且只有一個實(shí)根;
②由于y=f(x)在上單調(diào)遞減,在上單調(diào)遞增,因此f(x)在上的最小值f·lnln>-,故方程f(x)=-上沒有實(shí)數(shù)根.
綜上可知,方程f(x)=-有且只有一個實(shí)數(shù)根
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),).
(1)判斷曲線在點(diǎn)(1,)處的切線與曲線的公共點(diǎn)個數(shù);
(2)當(dāng)時,若函數(shù)有兩個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+x-16.
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線方程.
(2)如果曲線y=f(x)的某一切線與直線y=-x+3垂直,求切點(diǎn)坐標(biāo)與切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)在R上可導(dǎo),且,則(     )
A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間上有極值點(diǎn),則實(shí)數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)y=f(x),x∈R的導(dǎo)函數(shù)為f′(x),且f(x)=f(-x),f′(x)<f(x).則下列三個數(shù):ef(2),f(3),e2f(-1)從小到大依次排列為__________________.(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx(a,b∈R).
(1)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(1)=,且函數(shù)f(x)在上不存在極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個球的體積、表面積分別為V,S,若函數(shù)Vf(S),f′(S)是f(S)的導(dǎo)函數(shù),則f′(π)=(  )
A.B.C.1D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=xln x,g(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案