分析 (Ⅰ)令2kπ-π≤3x+$\frac{π}{4}$≤2kπ,求得x的范圍,可得f(x)的單調(diào)遞增區(qū)間.
(Ⅱ)令3x+$\frac{π}{4}$=kπ,求得x的值,可得函數(shù)f(x)圖象的對稱軸方程.
解答 解:(Ⅰ) 對于函數(shù)f(x)=2cos(3x+$\frac{π}{4}$),令2kπ-π≤3x+$\frac{π}{4}$≤2kπ,
求得$\frac{2kπ}{3}$-$\frac{5π}{12}$≤x≤$\frac{2kπ}{3}$-$\frac{π}{12}$,可得f(x)的單調(diào)遞增區(qū)間是[$\frac{2k}{3}$-$\frac{5}{12}$,$\frac{2k}{3}$-$\frac{π}{12}$],(k∈Z).
(Ⅱ)令3x+$\frac{π}{4}$=kπ,求得x=$\frac{k}{3}$-$\frac{π}{12}$,k∈Z,故函數(shù)f(x)圖象的對稱軸是x=$\frac{k}{3}$-$\frac{π}{12}$,(k∈Z).
點(diǎn)評 本題主要考查余弦函數(shù)的單調(diào)性以及它的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
社團(tuán) | 數(shù)學(xué) | 剪紙 | 美術(shù) |
人數(shù) | 320 | 240 | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com