12.設(shè)三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且b=$\frac{2\sqrt{3}}{3}$asinB,A為銳角
(1)若a=3,b=$\sqrt{6}$,求角B;
(2)若S△ABC=$\frac{\sqrt{3}}{2}$,b+c=3,b>c,求b,c.

分析 (1)將a,b代入條件式計算得出B,根據(jù)a>b可知B為銳角,從而得出B;
(2)利用正弦定理將邊化角,得出sinA,利用面積公式得出bc,結(jié)合b+c=3,解方程組得出b,c.

解答 解:(1)∵b=$\frac{2\sqrt{3}}{3}$asinB,∴$\sqrt{6}$=$\frac{2\sqrt{3}}{2}×3sinB$,∴sinB=$\frac{\sqrt{2}}{2}$,
∵A是銳角,a>b,∴B$<A<\frac{π}{2}$.
∴B=$\frac{π}{4}$.
(2)∵b=$\frac{2\sqrt{3}}{3}$asinB,∴sinB=$\frac{2\sqrt{3}}{3}$sinAsinB,∴sinA=$\frac{\sqrt{3}}{2}$,
∵A是銳角,∴A=$\frac{π}{3}$.
∵S△ABC=$\frac{1}{2}bcsinA$=$\frac{\sqrt{3}}{4}bc$=$\frac{\sqrt{3}}{2}$,∴bc=2.
又b+c=3,b>c,∴b=2,c=1.

點評 本題考查了正弦定理,三角形的面積公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2cos(3x+$\frac{π}{4}$).求:
(Ⅰ)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)f(x)圖象的對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex-e-x-xlna.
(1)若f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)0<x1<x2,證明:$\frac{{f'({x_1})-f'({x_2})}}{{{x_1}-{x_2}}}>\frac{2}{{{x_1}+{x_2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{a}$=($\frac{3}{2}$,-cosx),$\overrightarrow$=(sinx,$\frac{\sqrt{3}}{2}$),x∈[0,$\frac{π}{2}$],則函數(shù)f(x)=$\vec a•\vec b$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等比數(shù)列{an}的前n項和為Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,則項數(shù)n為( 。
A.12B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{3}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x+$\frac{π}{12}$的圖象關(guān)于點(a,b)成中心對稱圖形,若a∈(-$\frac{π}{2}$,0)則a+b=( 。
A.πB.$\frac{π}{2}$C.$\frac{π}{12}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.實數(shù)m取什么值時,復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點.
(Ⅰ)位于第四象限象限;
(Ⅱ)位于直線y=x上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)現(xiàn)有數(shù)學(xué)、語文、英語、物理和化學(xué)書各一本,從中任取一本,事件A為“從中取出的是理科書”,求P(A);
(2)擲一顆骰子,事件B為“擲得偶數(shù)點”,求P(B).

查看答案和解析>>

同步練習(xí)冊答案