11.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)若A⊆B,求實數(shù)m的取值范圍;
(2)若A∩B=(1,2),求實數(shù)m的取值范圍;
(3)若A∩B=∅,求實數(shù)m的取值范圍.

分析 (1)根據(jù)A為B的子集,確定出m的范圍即可;
(2)由A與B的交集,求出實數(shù)m的范圍即可;
(3)由A與B的交集為空集,確定出實數(shù)m的范圍即可.

解答 解:(1)∵A=(1,3),B=(2m,1-m),且A⊆B,
∴2m≤1且1-m≥3,
解得:m≤-2;
(2)∵A∩B=(1,2),
∴1-m=2,即m=-1;
(3)∵A∩B=∅,
∴B=∅或B≠∅且2m≥3且1-m≤1,
解得:m≥$\frac{1}{3}$或∅,
則實數(shù)m的范圍是m≥$\frac{1}{3}$.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2+blnx在x=1處有極值$\frac{1}{2}$.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無理數(shù)\end{array}$,稱為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個命題:
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知邊長為2$\sqrt{3}$的菱形ABCD中,∠A=60°,現(xiàn)沿對角線BD折起,使得AC=3$\sqrt{3}$,此時點A,B,C,D在同一個球面上,則該球的表面積為( 。
A.20πB.24πC.28πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,是△ABC邊長為1的正三角形,M,N分別是AB,AC邊上的點,線段MN過△ABC的重心,設(shè)∠MGA=α,$\frac{π}{3}$≤α≤$\frac{2π}{3}$.
(Ⅰ)當α=$\frac{2π}{3}$時,求MG的長;
(Ⅱ)分別記△AGM,△AGN的面積為S1,S2,試將S1,S2表示為α的函數(shù);
(Ⅲ)設(shè)y=$\frac{1}{{{S}_{1}}^{2}}$+$\frac{1}{{{S}_{2}}^{2}}$,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{e}^{x}}{{e}^{m}}$-lnx.
(Ⅰ)設(shè)x=1是函數(shù)f(x)的極值點,求m的值并討論f(x)的單調(diào)性;
(Ⅱ)當m≤-2時,證明:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a=$\sqrt{3}$b,A=120°,則B的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,(a>b>0),F(xiàn)1,F(xiàn)2分別為橢圓的左,右焦點,如圖過F2且斜率為1的直線與橢圓相交于P,Q兩點,且$\frac{{|P{F_2}|}}{{|Q{F_2}|}}$=2,則橢圓的離心率e=( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠BAC=90°,F(xiàn)為棱AA1上的動點,A1A=4,AB=AC=2.
(1)當F為A1A的中點,求直線BC與平面BFC1所成角的余弦值;
(2)當$\frac{AF}{{F{A_1}}}$的值為多少時,二面角B-FC1-C的大小是45°.

查看答案和解析>>

同步練習(xí)冊答案