設(shè)有拋物線C:y=-x2+x-4,通過原點O作C的切線y=kx,使切點P在第一象限.
(1)求k的值;
(2)過點P作切線的垂線,求它與拋物線的另一個交點Q的坐標(biāo).
【答案】分析:(1)切線與拋物線僅一個交點,方程組有唯一解,判別式等于0.
(2)點斜式寫出垂線方程,代入拋物線方程,求交點Q的坐標(biāo).
解答:解:(1)設(shè)點P的坐標(biāo)為(x1,y1),則y1=kx1
y1=-x12+x1-4②
①代入②得x12+(k-)x1+4=0.
∵P為切點,
∴△=(k-2-16=0得k=或k=
當(dāng)k=時,x1=-2,y1=-17.
當(dāng)k=時,x1=2,y1=1.
∵P在第一象限,∴所求的斜率k=
(2)過P點作切線的垂線,其方程為y=-2x+5③
將③代入拋物線方程得x2-x+9=0.
設(shè)Q點的坐標(biāo)為(x2,y2).則x2+2=
∴x2=,y2=-4,∴Q(,-4)
點評:本題屬于運用直線與圓錐曲線的位置關(guān)系求直線方程和交點坐標(biāo)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有拋物線C:y=-x2+
92
x-4,通過原點O作C的切線y=kx,使切點P在第一象限.
(1)求k的值;
(2)過點P作切線的垂線,求它與拋物線的另一個交點Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有拋物線C:y=-x2+
92
x-4,通過原點O作C的切線y=mx,使切點P在第一象限.
(1)求m的值,以及P的坐標(biāo);
(2)過點P作切線的垂線,求它與拋物線的另一個交點Q;
(3)設(shè)C上有一點R,其橫坐標(biāo)為t,為使DOPQ的面積小于DPQR的面積,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)有拋物線C:y=-x2+數(shù)學(xué)公式x-4,通過原點O作C的切線y=mx,使切點P在第一象限.
(1)求m的值,以及P的坐標(biāo);
(2)過點P作切線的垂線,求它與拋物線的另一個交點Q;
(3)設(shè)C上有一點R,其橫坐標(biāo)為t,為使DOPQ的面積小于DPQR的面積,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)有拋物線C:y=-x2+
9
2
x-4,通過原點O作C的切線y=kx,使切點P在第一象限.
(1)求k的值;
(2)過點P作切線的垂線,求它與拋物線的另一個交點Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)

       設(shè)有拋物線C:y= –x2+x–4,通過原點O作C的切線y=mx,使切點P在第一象限.

   (1)求m的值,以及P的坐標(biāo);

   (2)過點P作切線的垂線,求它與拋物線的另一個交點Q;

   (3)設(shè)C上有一點R,其橫坐標(biāo)為t,為使DOPQ的面積小于DPQR的面積,試求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案