與函數(shù)數(shù)學(xué)公式的圖象關(guān)于y軸對稱的函數(shù)解析式是________.

y=3x
分析:本題是研究兩個底數(shù)互為倒數(shù)的函數(shù)的圖象之間的關(guān)系,在指數(shù)型函數(shù)中,如果兩個函數(shù)的底數(shù)互為倒數(shù),則這兩個函數(shù)的圖象關(guān)于y對稱
解答:由于
故與其圖象關(guān)于y軸對稱的圖象對應(yīng)的函數(shù)的解析式為y=3x
故答案為 y=3x
點評:本題考點是指數(shù)函數(shù)的圖象,考查兩個底數(shù)互為倒數(shù)的函數(shù)圖象的對稱性,本題考查函數(shù)中的一個結(jié)論,適用范圍較窄,屬于較偏頗的知識點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①“向量
a
,
b
的夾角為銳角”的充要條件是“
a
b
>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對稱變換,再將所得的圖象關(guān)于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是
 
.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是 (xR)的反函數(shù),函數(shù)g(x)的圖象與函數(shù)的圖象關(guān)于直線x=-2成軸對稱圖形,設(shè)F(x)=f(x)+g(x).

(1)求函數(shù)F(x)的解析式及定義域;

(2)試問在函數(shù)F(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直?若存在,求出A,B坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 基本初等函數(shù)(Ⅰ)》2013年單元測試卷(解析版) 題型:解答題

已知函數(shù)f(x)是(x∈R)的反函數(shù),函數(shù)g(x)的圖象與函數(shù)的圖象關(guān)于直線x=-2成軸對稱圖形,設(shè)F(x)=f(x)+g(x).
(1)求函數(shù)F(x)的解析式及定義域;
(2)試問在函數(shù)F(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直?若存在,求出A,B坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省黃岡中學(xué)等八校高三第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

有三個命題①函數(shù)f(x)=lnx+x-2的圖象與x軸有2個交點;②函數(shù)的反函數(shù)是y=(x-1)2(x≥-1);③函數(shù)的圖象關(guān)于y軸對稱.其中真命題是( )
A.①③
B.②
C.③
D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年新課標版高一數(shù)學(xué)必修一第二章單元測試 題型:解答題

(14分)已知函數(shù)f(x)是 (xR)的反函數(shù),函數(shù)g(x)的圖象與函數(shù)的圖象關(guān)于直線x=-2成軸對稱圖形,設(shè)F(x)=f(x)+g(x).

(1)求函數(shù)F(x)的解析式及定義域;

(2)試問在函數(shù)F(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直?若存在,求出A,B坐標;若不存在,說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案