【題目】已知流程圖如下圖所示,該程序運(yùn)行后,為使輸出的值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( )
A. 2 B. 3 C. 5 D. 7
【答案】B
【解析】a=1,b=1,第一次循環(huán):b=2,a=2;第二次循環(huán):b=4,a=3;第三次循環(huán):b=16,a=4;所以,為使輸出的b值為16,循環(huán)體的判斷框內(nèi)應(yīng)填,即滿足則執(zhí)行循環(huán),否則退出循環(huán),輸出b=16,故選B.
點(diǎn)睛:本題考查學(xué)生的是框圖的循環(huán)結(jié)構(gòu),屬于中檔題目.解題的關(guān)鍵是根據(jù)框圖的結(jié)構(gòu),將a=1,b=1代入一一循環(huán)運(yùn)算,直到滿足題意.要判斷程序的運(yùn)行結(jié)果,我們要先根據(jù)已知判斷程序的功能,構(gòu)造出相應(yīng)的數(shù)學(xué)模型,將程序問題轉(zhuǎn)化為一個數(shù)學(xué)問題,得出數(shù)學(xué)關(guān)系式,進(jìn)而求出我們所要的答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),函數(shù)
(1)當(dāng)時,解關(guān)于的不等式: ;
(2)若且,已知函數(shù)有兩個零點(diǎn)和,若點(diǎn), ,其中是坐標(biāo)原點(diǎn),證明: 與不可能垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圖,在正方體中, 分別是的中點(diǎn).
(1)求證:平面平面;
(2)在棱上是存在一點(diǎn),使得平面,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求在區(qū)間上的最大值;
(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)(都在軸上方),且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時,求直線方程;
(3)對于動直線,是否存在一個定點(diǎn),無論如何變化,直線總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且,.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)設(shè)是數(shù)列的前項(xiàng)和,若對任意的都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(選修4—5:不等式選講)
已知函數(shù).
(1)若不等式的解集為,求的值;
(2)若對,,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com