已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A、B是橢圓的左、右頂點,P是橢圓上不同于A、B的一點,直線PA、PB斜傾角分別為α、β,則
cos(α-β)
cos(α+β)
=
 
分析:利用斜率公式,表示出tanα=
y
x+a
tanβ=
y
x-a
,利用離心率化簡橢圓方程,再根據(jù)和差的余弦公式,即可求得結論.
解答:解:由題意,A(-a,0),B(a,0),設P(x,y),則tanα=
y
x+a
,tanβ=
y
x-a

tanα•tanβ=
y
x+a
y
x-a
=
y2
x2-a2

∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,
a2-b2
a2
=
3
4

∴a2=4b2
x2
4b2
+
y2
b2
=1

y2=b2-
x2
4
=
a2-x2
4

y2
x2-a2
=-
1
4

tanα•tanβ=-
1
4

cos(α-β)
cos(α+β)
=
cosαcosβ+sinαsinβ
cosαcosβ-sinαsinβ
=
1+tanαtanβ
1-tanαtanβ
=
1-
1
4
1+
1
4
=
3
5

故答案為:
3
5
點評:本題考查斜率公式的運用,考查橢圓的幾何性質,考查和差的余弦公式,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點分別為F1,F(xiàn)2,左頂點為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標準方程,
(Ⅱ)若P是橢圓上的任意一點,求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F(-c,0)是長軸的一個四等分點,點A、B分別為橢圓的左、右頂點,過點F且不與y軸垂直的直線l交橢圓于C、D兩點,記直線AD、BC的斜率分別為k1,k2
(1)當點D到兩焦點的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經過點M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點.
(1)求橢圓的方程;
(2)當m=-1時,求△MAB的面積;
(3)求△MAB的內心的橫坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點做垂直于x軸的直線與橢圓相交于兩點,且兩交點與橢圓的左焦點及右頂點構成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點,若N為AB的中點,D為N在直線l上的射影,AB的中垂線與y軸交于點P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,過F作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習冊答案