【題目】已知函數(shù) , .
(1)求函數(shù) 的最小正周期;
(2)若 ,且 ,求 的值.
【答案】(1) (2)
【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由,得到, ,由配湊角公式得到,代入值得到函數(shù)值.
解析:
(1)由題意
=
所以 的最小正周期為 ;
(2)由
又由 得 ,所以
故 ,
故
【題型】解答題
【結(jié)束】
20
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬(wàn)元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出 萬(wàn)元,以后每年的支出比上一年增加了 萬(wàn)元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬(wàn)元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬(wàn)元).
(1)該廠從第幾年開(kāi)始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
【答案】(1) 從第 開(kāi)始盈利(2) 該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤(rùn)總和
(1)由 ,即 ,解得
由 知,從第 開(kāi)始盈利.
(2)年平均純利潤(rùn)
因?yàn)?/span> ,即
所以
當(dāng)且僅當(dāng) ,即 時(shí)等號(hào)成立.
年平均純利潤(rùn)最大值為 萬(wàn)元,
故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂(lè)發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對(duì)某小區(qū)跳廣場(chǎng)舞的人的年齡進(jìn)行了凋查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.
(1)估計(jì)在40名廣場(chǎng)舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場(chǎng)舞者年齡的中位數(shù)和平均數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場(chǎng)舞者中任取2名,求這兩名廣場(chǎng)舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,半徑為2的圓與相切,圓心在軸上且在直線的上方.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)(在軸上方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),分別過(guò)A、B兩點(diǎn)作準(zhǔn)線的垂線,垂足分別為A′、B′兩點(diǎn),以線段A′B′為直徑的圓C過(guò)點(diǎn)(﹣2,3),則圓C的方程為( )
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(Ⅰ)求函數(shù)及的解析式;
(Ⅱ)用函數(shù)單調(diào)性的定義證明:函數(shù)在上是減函數(shù);
(Ⅲ)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 (a>b>0)的焦點(diǎn)在圓x2+y2=3上,且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)原點(diǎn)O的直線l與橢圓C交于A,B兩點(diǎn),F為右焦點(diǎn),若△FAB為直角三角形,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以雙曲線 (a>0,b>0)上一點(diǎn)M為圓心的圓與x軸恰相切于雙曲線的一個(gè)焦點(diǎn)F,且與y軸交于P、Q兩點(diǎn).若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( )
A.
B.( , )
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com