在△ABC中,角A,B,C的對邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為2,求b+c.
(Ⅰ);(Ⅱ)6.
【解析】
試題分析:(Ⅰ) 對于2cos(B-C)+1=4cosBcosC通過三角恒等變換,再結合角的范圍即可得;(Ⅱ)利用余弦定理、面積公式可求.
試題解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得
2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,
∴cos(B+C)=. ∵0<B+C<π,∴B+C=.
∵A+B+C=π, ∴A=. 6分
(Ⅱ)由(Ⅰ),得A=.
由S△ABC=2,得bcsin=2,∴bc=8. ①
由余弦定理a2=b2+c2-2bccosA,得
(2)2=b2+c2-2bccos,即b2+c2+bc=28,
∴(b+c)2-bc=28. ②
將①代入②,得(b+c)2-8=28,
∴b+c=6. 12分
考點:解三角形,正、余弦定理,面積公式
科目:高中數(shù)學 來源: 題型:
3 |
3 |
A、a=c |
B、b=c |
C、2a=c |
D、a2+b2=c2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
11 | 14 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
b |
a |
sinB |
cosA |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com