設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,z差為d的等差數(shù){an}的前n項(xiàng)和為Sn,滿足S2S6+15=0.

(Ⅰ)若S5S.求Sna1;

(Ⅱ)求d的取值范圍.

答案:
解析:

  (Ⅰ)解:由題意知S0-3,

  aSS=-8

  所以

  解得a1=7

  所以S=-3,a1=7

  (Ⅱ)解:因?yàn)?I>SS+15=0,

  所以(5a1+10d)(6a1+15d)+15=0,

  即2a12+9da1+10d2+1=0.

  故(4a1+9d)2d2-8.

  所以d2≥8.

  故d的取值范圍為d≤-2d≥2


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0,則d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0.
(Ⅰ)若S5=5,求S6及a1
(Ⅱ)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前項(xiàng)和為Sn,滿足S3S4+15=0,則d的取值范圍為
d≥2
5
,或d≤-2
5
d≥2
5
,或d≤-2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5S6+15=0,S5=5
(Ⅰ)求通項(xiàng)an及Sn;
(Ⅱ)設(shè){bn-2an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)設(shè)a1,d為實(shí)數(shù),首項(xiàng)為a1,公差為d的等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足+15=0。

(Ⅰ)若=5,求及a1;

(Ⅱ)求d的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案