分析 由題意變形可得$\frac{8{x}^{3}+{y}^{3}}{4{x}^{2}+{y}^{2}+8}$=2x+y+$\frac{-12}{2x+y}$,由函數(shù)的性質(zhì)和基本不等式可得.
解答 解:∵x>0,y>0,xy=2,
∴$\frac{8{x}^{3}+{y}^{3}}{4{x}^{2}+{y}^{2}+8}$=$\frac{(2x)^{3}+{y}^{3}}{4{x}^{2}+{y}^{2}+4xy}$
=$\frac{(2x+y)(4{x}^{2}-2xy+{y}^{2})}{(2x+y)^{2}}$=$\frac{4{x}^{2}-4+{y}^{2}}{2x+y}$
=$\frac{4{x}^{2}+4xy+{y}^{2}-4xy-4}{2x+y}$=$\frac{(2x+y)^{2}-12}{2x+y}$
=2x+y+$\frac{-12}{2x+y}$
當(dāng)2x+y取最小值時,$\frac{-12}{2x+y}$有最小值,
即當(dāng)2x+y≥2$\sqrt{2xy}$=4即2x=y時取等號,
代入計算可得最小值為4+$\frac{-12}{4}$=1
故答案為:1
點評 本題考查基本不等式求最值,變換已知式子是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P(X=i)=0.1,i=0,1,2,3,4 | B. | P(X=i)=$\frac{{i}^{2}+5}{50}$,i=1,2,3,4,5 | ||
C. | P(X=i)=$\frac{i}{10}$,i=1,2,3,4,5 | D. | P(X=i)=0.2,i=1,2,3,4,5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com