【題目】函數(shù) .
(1)當時,討論的單調(diào)性;
(2)若函數(shù)有兩個極值點,且,證明: .
【答案】(1)答案見解析;(2)證明見解析.
【解析】試題分析:
(1)結(jié)合函數(shù)的解析式求導可得,分類討論可得:
當時, 在上遞減,
在和上遞增,當時,在上遞增.
(2)由題意結(jié)合函數(shù)的性質(zhì)可知: 是方程的兩根,結(jié)合所給的不等式構(gòu)造對稱差函數(shù) ,結(jié)合函數(shù)的性質(zhì)和自變量的范圍即可證得題中的不等式.
試題解析:
函數(shù)的定義域為,
(1)令,開口向上, 為對稱軸的拋物線,
當時,
①,即時, ,即在上恒成立,
②當時,由,得,
因為,所以,當時, ,即,
當或時, ,即,
綜上,當時, 在上遞減,
在和上遞增,當時,在上遞增.
(2)若函數(shù)有兩個極值點且,
則必有,且,且在上遞減,在和上遞增,
則,
因為是方程的兩根,
所以,即,
要證
又
,
即證對恒成立,
設(shè)
則
當時, ,故,
所以在上遞增,
故,
所以,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙兩位同學8次數(shù)學單元測試的成績構(gòu)成如下所示的莖葉圖,且甲同學成績的平均數(shù)比乙同學成績的平均數(shù)小2.
(1)求m的值以及乙同學成績的方差;
(2)若數(shù)學測試的成績高于85分(含85分),則視為優(yōu)秀.現(xiàn)對乙同學的成績進行深入分析,在乙同學的優(yōu)秀成績中任取2次成績,求至少有一次抽取的成績超過90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設(shè)動點P的軌跡為曲線C,過點F的直線交曲線C于A、B兩個不同的點,過點A、B分別作曲線C的切線,且二者相交于點M.
(Ⅰ)求曲線C的方程;
(Ⅱ)求證: ;
(Ⅲ)求△ABM的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題分)
如圖, 和所在的平面互相垂直,且, .
(Ⅰ)求證: .
(Ⅱ)求直線與面所成角的大小的正弦值.
(Ⅲ)求二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓: 的離心率為, 、為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于、的兩點,且直線的斜率等于直線斜率的2倍.
(Ⅰ)求證:直線與直線的斜率乘積為定值;
(Ⅱ)求三角形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù), ).
(1)討論函數(shù)的單調(diào)性;
(2)當函數(shù)有兩個零點時,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是線段BC上一點,直線BC與平面ABD所成角為30°,CE∥平面ADF.
(1)試確定F的位置;
(2)求三棱錐A-CDF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com