【題目】函數(shù) .

(1)當時,討論的單調(diào)性;

(2)若函數(shù)有兩個極值點,且,證明: .

【答案】(1)答案見解析;(2)證明見解析.

【解析】試題分析:

(1)結(jié)合函數(shù)的解析式求導可得,分類討論可得:

時, 上遞減,

上遞增,當時,在上遞增.

(2)由題意結(jié)合函數(shù)的性質(zhì)可知: 是方程的兩根,結(jié)合所給的不等式構(gòu)造對稱差函數(shù) ,結(jié)合函數(shù)的性質(zhì)和自變量的范圍即可證得題中的不等式.

試題解析:

函數(shù)的定義域為

(1)令,開口向上, 為對稱軸的拋物線,

時,

,即時, ,即上恒成立,

②當時,由,得,

因為,所以,當時, ,即,

時, ,即

綜上,當時, 上遞減,

上遞增,當時,在上遞增.

(2)若函數(shù)有兩個極值點,

則必有,且,且上遞減,在上遞增,

因為是方程的兩根,

所以,即

要證

,

即證恒成立,

設(shè)

時, ,故,

所以上遞增,

,

所以

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知甲、乙兩位同學8次數(shù)學單元測試的成績構(gòu)成如下所示的莖葉圖,且甲同學成績的平均數(shù)比乙同學成績的平均數(shù)小2.

(1)求m的值以及乙同學成績的方差;

(2)若數(shù)學測試的成績高于85分(含85分),則視為優(yōu)秀.現(xiàn)對乙同學的成績進行深入分析,在乙同學的優(yōu)秀成績中任取2次成績,求至少有一次抽取的成績超過90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點P到定點F(0,1)的距離比它到直線的距離小1,設(shè)動點P的軌跡為曲線C,過點F的直線交曲線C于A、B兩個不同的點,過點AB分別作曲線C的切線,且二者相交于點M

(Ⅰ)求曲線C的方程;

()求證: ;

(Ⅲ)△ABM的面積的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,值域是.

(Ⅰ)求證: ;

(Ⅱ)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題分)

如圖, 所在的平面互相垂直,且

)求證:

)求直線與面所成角的大小的正弦值.

)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 、為橢圓的左右頂點,焦點到短軸端點的距離為2, 、為橢圓上異于的兩點,且直線的斜率等于直線斜率的2倍.

(Ⅰ)求證:直線與直線的斜率乘積為定值;

(Ⅱ)求三角形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)其中是自然對數(shù)的底數(shù), .

1)討論函數(shù)的單調(diào)性;

(2)當函數(shù)有兩個零點時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面, , , , , 的中點

(Ⅰ)求證:

(Ⅱ)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,五面體ABCDE,四邊形ABDE是矩形,△ABC是正三角形,AB1,AE2F是線段BC上一點,直線BC與平面ABD所成角為30°,CE∥平面ADF.

(1)試確定F的位置;

(2)求三棱錐ACDF的體積.

查看答案和解析>>

同步練習冊答案