18.在△ABC中,角A、B、C所對的邊分別為a、b、c,且A>B,則一定有( 。
A.cosA>cosBB.sinA>sinBC.tanA>tanBD.sinA<sinB

分析 由A>B,可得a>b,利用正弦定理可得2RsinA>2RsinB,從而可求sinA>sinB;

解答 解:∵△ABC中,A>B,
∴a>b,
∴2RsinA>2RsinB,
∴sinA>sinB.
故選:B.

點(diǎn)評 本題主要考查了大邊對大角,正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“有理數(shù)是無限不循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限不循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是( 。
A.使用了歸納推理B.使用了類比推理
C.使用了“三段論”,但大前提錯(cuò)誤D.使用了“三段論”,但小前提錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“a=1”是“函數(shù)f(x)=x2-4ax+3在區(qū)間[2,+∞)上為增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,一個(gè)空間幾何體的正視圖和俯視圖都是周長為4,一個(gè)內(nèi)角為60°的菱形,俯視圖是圓及其圓心,那么這個(gè)幾何體的表面積為(  )
A.B.$\frac{\sqrt{3π}}{2}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖程序框圖,該框圖中循環(huán)體執(zhí)行的次數(shù)是(  )
A.50B.100C.49D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知某班級部分同學(xué)一次測驗(yàn)的成績統(tǒng)計(jì)如圖,則其中位數(shù)和眾數(shù)分別為(  )
A.95,94B.92,86C.99,86D.95,91

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓兩焦點(diǎn)的坐標(biāo)為F1(-1,0),F(xiàn)2(1,0),點(diǎn)P為橢圓上一點(diǎn),|PF1|,|F1F2|,|F2P|成等差數(shù)列,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a>0,函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,當(dāng)x∈[0,$\frac{π}{2}$]時(shí),-5≤f(x)≤1.
(1)求常數(shù)a,b的值;
(2)設(shè)g(x)=f(x+$\frac{π}{2}$)且lg g(x)>0,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ)若直線l的參數(shù)方程中t=$\sqrt{2}$的時(shí),得到M點(diǎn),求M的極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P(1,2),l和曲線C交于A,B兩點(diǎn),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

同步練習(xí)冊答案