2.已知等差數(shù)列{an}的前n項(xiàng)和Sn=10n-n2,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 由數(shù)列的前n項(xiàng)和求出數(shù)列的通項(xiàng),判斷出數(shù)列{an}的前5項(xiàng)為正值,自第6項(xiàng)起為負(fù)值,然后分類(lèi)求得數(shù)列{bn}的前n項(xiàng)和Tn

解答 解:由Sn=10n-n2,得a1=9;
當(dāng)n≥2時(shí),${a}_{n}={S}_{n}-{S}_{n-1}=10n-{n}^{2}-[10(n-1)-(n-1)^{2}]$
=11-2n,
由an≥0,得11-2n≥0,∴n$≤\frac{11}{2}$,
∴數(shù)列{an}的前5項(xiàng)為正值,自第6項(xiàng)起為負(fù)值,
則當(dāng)n≤5時(shí),${T}_{n}={S}_{n}=10n-{n}^{2}$;
當(dāng)n≥6時(shí),Tn=(b1+b2+…+b5)-(b6+b7+…+bn
=2(b1+b2+…+b5)-(b1+b2+…+bn)=2S5-Sn=n2-10n+50.
∴${T}_{n}=\left\{\begin{array}{l}{10n-{n}^{2},n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.

點(diǎn)評(píng) 本題考查數(shù)列求和,考查了分類(lèi)討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求證:sin2A+sin2B+sin2C=0,cos2A+cos2B+cos2C=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=$\frac{\sqrt{{x}^{2}-2x-3}}{4-{x}^{2}}$的定義域?yàn)閧x|x≤-1,或x≥3,且x≠-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線3x-4y-5=0垂直,則雙曲線的離心率為( 。
A.$\frac{5}{3}$或$\frac{5}{4}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的動(dòng)弦BC平行于虛軸,M,N是雙曲線的左、右頂點(diǎn),求直線MB,CN的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}滿足a1=$\frac{7}{8}$,且an+1=$\frac{1}{2}$an$+\frac{1}{3}$,n∈N*,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)于數(shù)列{an},定義數(shù)列{an+1-an}為數(shù)列{an}的“等差列”,若a1=2,{an}的“等差列”的通項(xiàng)公式為2n,則數(shù)列{an}的前2015項(xiàng)和S2015=( 。
A.22016-1B.22016C.22016+1D.22016-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若數(shù)列{xn}滿足$lg{x_{n+1}}=1+lg{x_n}(n∈{N^*})$,且x1+x2…+x10=100,則lg(x11+x12…+x20)=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)是定義在(0,+∞)上的單調(diào)函數(shù),?x∈(0,+∞),f[f(x)-lnx]=e+1,給出下面四個(gè)命題:
①不等式f(x)>0恒成立;
②函數(shù)f(x)存在唯一零點(diǎn)x0,且x0∈(0,1);
③方程f(x)=x有且僅有一個(gè)根;
④方程f(x)-f′(x)=e+1(其中e為自然對(duì)數(shù)的底數(shù))有唯一解x0,且x0∈(1,2).
其中正確命題的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案