10.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F1,左頂點(diǎn)為A,過F1作x軸的垂線交雙曲線于P、Q兩點(diǎn),過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點(diǎn)為B,若B到直線PQ的距離大于a+$\sqrt{{a}^{2}+^{2}}$,則該雙曲線的離心率取值范圍是( 。
A.(1-$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2$\sqrt{2}$)D.(2$\sqrt{2}$,+∞)

分析 根據(jù)雙曲線的對(duì)稱性,則B(x,0),由kBP•kAQ=-1,求得c+x=-$\frac{^{4}}{{a}^{2}(a-c)}$,由B到直線PQ的距離d=x+c,由丨-$\frac{^{4}}{{a}^{2}(a-c)}$丨>a+$\sqrt{{a}^{2}+^{2}}$,即可求得$\frac{a}$>1,利用雙曲線的離心率公式即可求得e的取值范圍.

解答 解:由題意可知:A(-a,0),P(-c,$\frac{^{2}}{a}$),Q(-c,-$\frac{^{2}}{a}$),
由雙曲線的對(duì)稱性可知B在x軸上,設(shè)B(x,0),
則BP⊥AQ,
則kBP•kAQ=-1,
∴$\frac{-\frac{^{2}}{a}}{-c-x}$•$\frac{\frac{^{2}}{a}}{-c+a}$=-1,
則c+x=-$\frac{^{4}}{{a}^{2}(a-c)}$,
由B到直線PQ的距離d=x+c,
∴丨-$\frac{^{4}}{{a}^{2}(a-c)}$丨>a+$\sqrt{{a}^{2}+^{2}}$,則$\frac{^{4}}{{a}^{2}}$>c2-a2=b2,
∴$\frac{a}$>1,
由橢圓的離心率e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$>$\sqrt{2}$,
雙曲線的離心率取值范圍($\sqrt{2}$,+∞),
故選B.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查雙曲線通徑的求法,直線的斜率公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\frac{sinx}{|sinx|}+\frac{2cosx}{|cosx|}+\frac{3tanx}{|tanx|}$的值域?yàn)锳,則集合A的子集個(gè)數(shù)為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正項(xiàng)等比數(shù)列{an}中有$\root{21}{{a}_{1993}•{a}_{1994}•{a}_{1995}…{a}_{2013}}$=$\root{4005}{{a}_{1}•{a}_{2}•{a}_{3}…{a}_{4005}}$,則在等差數(shù)列{bn}中,類似的正確的結(jié)論有$\frac{_{1993}+_{1994}+…+_{2013}}{21}$=$\frac{_{1}+_{2}+…+_{4005}}{4005}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合A={x|-1<x<2},B={x|y=lg(x-1)},則A∩(∁RB)=(  )
A.(-1,1)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足$\frac{1+i}{1-i}$•z=3+4i,則|z|=( 。
A.2$\sqrt{6}$B.$\sqrt{7}$C.5$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),M為橢圓上除長軸端點(diǎn)外的任意一點(diǎn),且△MF1F2的周長為4+2$\sqrt{3}$.
(1)求橢圓C的方程;
(2)過點(diǎn)D(0,-2)作直線l與橢圓C交于A、B兩點(diǎn),點(diǎn)N滿足$\overrightarrow{ON}=\overrightarrow{OA}+\overrightarrow{OB}$(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知拋物線y2=4x,圓F:(x-1)2+y2=1,直線y=k(x-1)自上而下順次與上述兩曲線交于點(diǎn)A,B,C,D,則|AB||CD|的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對(duì)學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對(duì)學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:
善于使用學(xué)案不善于使用學(xué)案總計(jì)
學(xué)習(xí)成績優(yōu)秀40
學(xué)習(xí)成績一般30
總計(jì)100
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.0500.0100.001
k03.8416.63510.828
已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
(1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過程);
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對(duì)待學(xué)案的使用態(tài)度有關(guān)?
(3)利用分層抽樣的方法從善于使用學(xué)案的同學(xué)中隨機(jī)抽取6人,從這6人中抽出3人繼續(xù)調(diào)查,設(shè)抽出學(xué)習(xí)成績優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知點(diǎn)P(a,b)在函數(shù)y=$\frac{{e}^{2}}{x}$上,且a>1,b>1,則alnb的最大值為e.

查看答案和解析>>

同步練習(xí)冊(cè)答案