如圖,橢圓上的點到焦點的距離為2,的中點,則為坐標(biāo)原點)的值為

A.8   B.2   C. 4   D.

 

【答案】

C

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓中心在原點,F(xiàn)是焦點,A為頂點,準(zhǔn)線l(橢圓上的點到焦點的距離與到準(zhǔn)線的距離之比等于離心率)交x軸于點B,點P,Q在橢圓上,且PD⊥l于D,QF⊥AO,則①
|PF|
|PD|
;②
|QF|
|BF|
;③
|FO|
|AO|
;④
|AF|
|AB|
,其中比值為橢圓的離心率的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C方程為
x2
a2
+
y2
b2
=1
(a>b>0),點A1,A2為橢圓C的左、右頂點.
(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足AA2⊥BA2,求證:直線l過定點,并求出該點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線y2=2px(p>0)上縱坐標(biāo)為1的點到焦點的距離為p,過點P(1,0)做斜率為k的直線l交拋物線于A,B兩點,A點關(guān)于x軸的對稱點為C,直線BC交x軸于Q點;
(1)求p的值;
(2)求證:點Q是定點,并求出點Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧沈陽二中等重點中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(二)文數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿分12分)如圖,橢圓C方程為 (),點為橢圓C的左、右頂點。

(1)若橢圓C上的點到焦點的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與(1)中所述橢圓C相交于A、B兩點(A、B不是左、右頂點),且滿足,求證:直線過定點,并求出該點的坐標(biāo)。 

 

查看答案和解析>>

同步練習(xí)冊答案