【題目】函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖,則函數(shù)表達(dá)式為;若將該函數(shù)向左平移1個(gè)單位,再保持縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍得到函數(shù)g(x)= .
【答案】y=sin( x+ );cos x
【解析】解:根據(jù)函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象,可得 =3﹣1= ,∴ω= .
再根據(jù)五點(diǎn)法作圖可得1× +φ= ,∴φ= ,函數(shù)y=sin( x+ ).
將該函數(shù)向左平移1個(gè)單位,再保持縱坐標(biāo)不變,可得y=sin[ (x+1)+ ]=cos x的圖象;
再把橫坐標(biāo)縮短為原來的 倍得到函數(shù)g(x)=cos x的圖象
所以答案是: ;cos x.
【考點(diǎn)精析】利用函數(shù)y=Asin(ωx+φ)的圖象變換對(duì)題目進(jìn)行判斷即可得到答案,需要熟知圖象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,
空間想象能力突出 | 空間想象能力正常 | 合計(jì) | |
男生 |
|
| |
女生 |
| ||
合計(jì) |
|
(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4cosωxsin(ωx+ )+a(ω>0)圖象上最高點(diǎn)的縱坐標(biāo)為2,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的S的值為64,則判斷框內(nèi)可填入的條件是( )
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n), .
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時(shí)成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數(shù)列{(﹣1)nan}的前40項(xiàng)的和為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2(a∈R),y=f(x)的圖象連續(xù)不間斷.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=1時(shí),設(shè)l是曲線y=f(x)的一條切線,切點(diǎn)是A,且l在點(diǎn)A處穿過函數(shù)y=f(x)的圖象(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線y=f(x)運(yùn)動(dòng),經(jīng)過點(diǎn)A時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求切線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com