已知||=2,||=,∠AOB=150°,點C在∠AOB內(nèi),且∠AOC=30°,設(m,n∈R),則=( )
A.
B.
C.
D.
【答案】分析:將向量 沿 方向利用平行四邊形原則進行分解,構(gòu)造出三角形,由題目已知,可得三角形中三邊長及三個角,然后解三角形即可得到分解結(jié)果.
解答:解:設 =+,=x,則 =2x.
 =
∴m=x,n=
==
故選B.
點評:對一個向量根據(jù)平面向量基本定理進行分解,關鍵是要根據(jù)平行四邊形法則,找出向量在基底兩個向量方向上的分量,再根據(jù)已知條件構(gòu)造三角形,解三角形即可得到分解結(jié)果.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知-
π
2
<x<0,sinx+cosx=
1
5
,求sinxcosx和sinx-cosx的值.
(2)已知tanα=2,求2sin2α-3sinαcosα-2cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-
π
2
<x<0,則sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos2
x
2
tanx+cotx
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
π
2
,π),cosα=-
4
5
,則tan(α-
π
4
)
等于(  )
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
π
2
<α<π,tanα-cotα=
8
3
(1)求tanα的值;(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知-
π
2
<x<0
,sinx+cosx=
1
5
,則
sinx-cosx
sinx+cosx
等于( 。
A、-7
B、-
7
5
C、7
D、
7
5

查看答案和解析>>

同步練習冊答案