2.設f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,則f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

分析 根據(jù)f(k)中的分母是從k+1到k+2k,f(k+1)中的分母是從k+2到k+1+2k+1,分析相同項與不同項,由此得出答案.

解答 解:∵f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{k{+2}^{k}}$,
f(k+1)=$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{k+1{+2}^{k+1}}$,
∴f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.
故答案為:$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

點評 本題主要考查了歸納思想的應用問題,也考查了分析問題解決問題的能力,解題時應注意項數(shù)的變化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設x,y滿足條件$\left\{{\begin{array}{l}{2x+y≥4,\;\;}\\ \begin{array}{l}x-y≥1\\ x-2y≤2\end{array}\end{array}}\right.$且z=x+y+a(a為常數(shù))的最小值為4,則實數(shù)a的值為(  )
A.$\frac{5}{3}$B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.復數(shù)$\frac{1}{i-2}$-$\frac{i}{1+2i}$在復平面內(nèi)所對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知全集U={1,2,3,4,5},A={1,2},B={2,3,4},那么A∪(∁UB)={1,2,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形:
(1)已知a=6$\sqrt{5}$,b=6$\sqrt{5}$;
(2)已知a=2,c=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.復數(shù)$\frac{1+3i}{i-1}$=( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中,角A、B、C與邊a,b,c滿足asinAsinB+bcos2A=$\sqrt{2}$a.
(1)求$\frac{a}$的值;
(2)若c=2,且△ABC面積為2$\sqrt{2}$,求邊長a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點M是拋物線C1:y2=2px(p>0)的準線與x軸的交點,點P是拋物線C1上的動點,點A、B在y軸上,△APB的內(nèi)切圓為圓C2,(x一1)2+y2=1,且|MC2|=3|OM|為坐標原點.
(I)求拋物線C1的標準方程;
(Ⅱ)求△APB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)y=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值為M,最小值為m,則$\frac{m}{M}$的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習冊答案