在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB=
3
b

(1)求角A的大;
(2)若a=4,b+c=8,求△ABC的面積.
分析:(1)由正弦定理將已知等式化成角的正弦的形式,化簡解出sinA=
3
2
,再由△ABC是銳角三角形,即可算出角A的大小;
(2)由余弦定理a2=b2+c2-2bccosA的式子,結(jié)合題意化簡得b2+c2-bc=16,與聯(lián)解b+c=8得到bc的值,再根據(jù)三角形的面積公式加以計算,可得△ABC的面積.
解答:解:(1)∵△ABC中,2asinB=
3
b
,
∴根據(jù)正弦定理,得2sinAsinB=
3
sinB
,
∵銳角△ABC中,sinB>0,
∴等式兩邊約去sinB,得sinA=
3
2

∵A是銳角△ABC的內(nèi)角,∴A=
π
3
;
(2)∵a=4,A=
π
3
,
∴由余弦定理a2=b2+c2-2bccosA,得16=b2+c2-2bccos
π
3
,
化簡得b2+c2-bc=16,
∵b+c=8,平方得b2+c2+2bc=64,
∴兩式相減,得3bc=48,可得bc=16.
因此,△ABC的面積S=
1
2
bcsinA=
1
2
×16×sin
π
3
=4
3
點評:本題給出三角形的邊角關(guān)系,求A的大小并依此求三角形的面積,著重考查了正余弦定理的運用和三角形的面積公式等知識,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,給出如下命題:
①若
AC
AB
>0
,則△ABC為銳角三角形;
②O是△ABC所在平面內(nèi)一定點,且滿足
OA
OB
=
OB
OC
=
OC
OA
,則O是△ABC的垂心;
③O是△ABC所在平面內(nèi)一定點,動點P滿足
OP
=
OA
+λ(
AB
+
AC
),λ∈[0,+∞)
,則動點P一定過△ABC的重心;
④O是△ABC內(nèi)一定點,且
OA
+
OB
+
OC
=
0
,則
S△AOC
S△ABC
=
1
3

⑤若(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0
,且
AB
|
AB
|
AC
|
AC
|
=
1
2
,則△ABC為等腰直角三角形.
其中正確的命題為
②③④
②③④
(將所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源:浙江省金華一中2011-2012學年高一下學期期中考試數(shù)學試卷 題型:013

給出下列命題:

(1)α、β是銳角△ABC的兩個內(nèi)角,則sinα<sinβ;

(2)在銳角△ABC中,BC=1,B=2A,則AC的取值范圍為();

(3)已知為互相垂直的單位向量,-2,+λ的夾角為銳角,則實數(shù)λ的取值范圍是;

(4)已知O是△ABC所在平面內(nèi)定點,若P是△ABC的內(nèi)心,則有+λ(),λ∈R;

(5)直線x=-是函數(shù)y=sin(2x-)圖象的一條對稱軸.

其中正確命題是

[  ]

A.(1)(3)(5)

B.(2)(4)(5)

C.(2)(3)(4)

D.(1)(4)(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,AB<AC,AD是邊BC上的高,P是線段AD內(nèi)一點。過PPEAC,垂足為E,做PFAB,垂足為F。O1、O2分別是△BDF、△CDE的外心。求證:O1O2、EF四點共圓的充要條件為P是△ABC的垂心。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,AB<AC,AD是邊BC上的高,P是線段AD內(nèi)一點。過PPEAC,垂足為E,做PFAB,垂足為F。O1O2分別是△BDF、△CDE的外心。求證:O1、O2E、F四點共圓的充要條件為P是△ABC的垂心。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知在銳角ΔABC中,角所對的邊分別為,且

(I )求角大;

(II)當時,求的取值范圍.

20.如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。

(1)求證:平面;

(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。

 


21.已知A,B是橢圓的左,右頂點,,過橢圓C的右焦點F的直線交橢圓于點M,N,交直線于點P,且直線PA,PF,PB的斜率成等差數(shù)列,R和Q是橢圓上的兩動點,R和Q的橫坐標之和為2,RQ的中垂線交X軸于T點

(1)求橢圓C的方程;

(2)求三角形MNT的面積的最大值

22. 已知函數(shù) ,

(Ⅰ)若上存在最大值與最小值,且其最大值與最小值的和為,試求的值。

(Ⅱ)若為奇函數(shù):

(1)是否存在實數(shù),使得為增函數(shù),為減函數(shù),若存在,求出的值,若不存在,請說明理由;

(2)如果當時,都有恒成立,試求的取值范圍.

查看答案和解析>>

同步練習冊答案