已知函數(shù)有三個(gè)極值點(diǎn)。
(I)證明:;
(II)若存在實(shí)數(shù)c,使函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍。
(1)利用導(dǎo)數(shù)的符號(hào)判定函數(shù)單調(diào)性,以及桉樹(shù)的極值,進(jìn)而證明。
(2) 當(dāng)時(shí),所以
反之, 當(dāng)時(shí),
總可找到使函數(shù)在區(qū)間上單調(diào)遞減.

試題分析:解:(I)因?yàn)楹瘮?shù)有三個(gè)極值點(diǎn),
所以有三個(gè)互異的實(shí)根.  
設(shè)
當(dāng)時(shí), 上為增函數(shù);
當(dāng)時(shí), 上為減函數(shù);
當(dāng)時(shí), 上為增函數(shù);
所以函數(shù)時(shí)取極大值,在時(shí)取極小值.  (3分)
當(dāng)時(shí),最多只有兩個(gè)不同實(shí)根.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005440134518.png" style="vertical-align:middle;" />有三個(gè)不同實(shí)根, 所以.
,且,
解得.                 (5分)
(II)由(I)的證明可知,當(dāng)時(shí), 有三個(gè)極值點(diǎn).
不妨設(shè)為),則
所以的單調(diào)遞減區(qū)間是,
在區(qū)間上單調(diào)遞減,
, 或,
,則.由(I)知,,于是
,則.由(I)知,
當(dāng)時(shí),;
因此, 當(dāng)時(shí),所以
反之, 當(dāng)時(shí),
總可找到使函數(shù)在區(qū)間上單調(diào)遞減.             (10分)
點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的符號(hào)判定函數(shù)的單調(diào)性,以及函數(shù)的極值,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若上單調(diào)遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對(duì)于區(qū)間上的任意兩個(gè)值總有以下不等式成立,則稱(chēng)函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當(dāng)時(shí),為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是函數(shù)的一個(gè)極值點(diǎn),其中
(1)求的關(guān)系式;
(2)求的單調(diào)區(qū)間;
(3)設(shè)函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x|x-2|.
(1)寫(xiě)出f(x)的單調(diào)區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)
(Ⅰ)若a=,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)f(x)≥0,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=2x3-3x2-12x+5在[0,3]上的最大值是_______   最小值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=lnx,0<a<b<c<1,則, ,的大小關(guān)系是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義在上的函數(shù)滿足:對(duì)任意,恒成立.有下列結(jié)論:①;②函數(shù)上的奇函數(shù);③函數(shù)是定義域內(nèi)的增函數(shù);④若,且,則數(shù)列為等比數(shù)列.
其中你認(rèn)為正確的所有結(jié)論的序號(hào)是                    

查看答案和解析>>

同步練習(xí)冊(cè)答案