商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
分析 (1)畫出散點圖如圖;
(2)先求出x,y的均值,再由公式$\widehat$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{{\sum_{i=1}^{n}x}_{i}}^{2}-{n\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$計算出系數(shù)的值,即可求出線性回歸方程;
(3)將零售店某月銷售額為4千萬元代入線性回歸方程,計算出y的值,即為此月份該零售點的估計值.
解答 解:(1)根據(jù)所給的五組數(shù)據(jù),得到五個有序數(shù)對,在平面直角坐標系中畫出點,得到散點圖:
兩個變量符合正相關;
(2)設回歸直線的方程是:$\widehat{y}$=bx+a,$\overline{y}$=3.4,$\overline{x}$=6;
∴$\widehat$=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-n\overline{x}\overline{y}}{{{\sum_{i=1}^{n}x}_{i}}^{2}-{n\overline{x}}^{2}}$=$\frac{-3×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.6}{9+1+1+9}$=$\frac{10}{20}$=$\frac{1}{2}$,
a=0.4
∴y對銷售額x的回歸直線方程為:y=0.5x+0.4;
(3)當銷售額為4(千萬元)時,利潤額為:$\widehat{y}$=0.5×4+0.4=2.4(百萬元).
點評 本題考查線性回歸方程,解題的關鍵是掌握住線性回歸方程中系數(shù)的求法公式及線性回歸方程的形式,按公式中的計算方法求得相關的系數(shù),得出線性回歸方程,本題考查了公式的應用能力及計算能力,求線性回歸方程運算量較大,解題時要嚴謹,莫因為計算出錯導致解題失敗.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 25 | B. | 1005 | C. | 26 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com