已知以點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn)和,且圓心在直線上.
(1)求圓的方程;
(2)設(shè)點(diǎn)在圓上,求的面積的最大值.
(1);(2).
解析試題分析:(1)圓心為的垂直平分線和直線的交點(diǎn),解之可得的坐標(biāo),由距離公式可得半徑,進(jìn)而可得所求圓的方程;(2)先求得間的距離,然后由點(diǎn)到直線的距離公式求得圓心到的距離,而到距離的最大值為,從而由面積公式求得面積的最大值.
試題解析:(1)依題意所求圓的圓心為的垂直平分線和直線的交點(diǎn),
中點(diǎn)為斜率為1,
垂直平分線方程為,即 .
聯(lián)立解得 即圓心,半徑,
所求圓方程為 .
(2),
圓心到的距離為 ,
到距離的最大值為,
所以面積的最大值為.
考點(diǎn):1、求圓的方程;2、兩條直線相交;3、直線與圓相交的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓過(guò)點(diǎn),,并且直線平分圓的面積.
(1)求圓的方程;
(2)若過(guò)點(diǎn),且斜率為的直線與圓有兩個(gè)不同的公共點(diǎn).
①求實(shí)數(shù)的取值范圍; ②若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)O,軸正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)C的極坐標(biāo)為,若直線l經(jīng)過(guò)點(diǎn)P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標(biāo)方程;
(2).試判斷直線l與圓C有位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)在圓上運(yùn)動(dòng),,點(diǎn)為線段MN的中點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)求點(diǎn)到直線的距離的最大值和最小值..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C:x2+(y-3)2=4,一動(dòng)直線l過(guò)A(-1,0)與圓C相交于P、Q兩點(diǎn),
M是PQ中點(diǎn),l與直線m:x+3y+6=0相交于N.
(1)求證:當(dāng)l與m垂直時(shí),l必過(guò)圓心C;
(2)當(dāng)PQ=2時(shí),求直線l的方程;
(3)探索·是否與直線l的傾斜角有關(guān)?若無(wú)關(guān),請(qǐng)求出其值;若有關(guān),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知t∈R,圓C:x2+y2-2tx-2t2y+4t-4=0.
(1)若圓C的圓心在直線x-y+2=0上,求圓C的方程;
(2)圓C是否過(guò)定點(diǎn)?如果過(guò)定點(diǎn),求出定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點(diǎn),且AB=2,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com