已知兩個正數(shù)a,b,可按規(guī)則c=an+a+b擴充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則再擴充得到一個新數(shù),依次下去,將每擴充一次得到一個新數(shù)稱為一次操作,若p>q>0,對數(shù)p和數(shù)q經(jīng)過10次操作后,擴充所得的數(shù)為(p+1)m(q+1)n-1,其中m,n是正整數(shù),則m+n的值是
 
考點:類比推理
專題:計算題,推理和證明
分析:p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1;第二次得:c2=(p+1)2(q+1)-1;所得新數(shù)大于任意舊數(shù),故經(jīng)過10次擴充,所得數(shù)為:(q+1)55(p+1)89-1,故可得結論.
解答: 解:因為p>q>0,所以第一次得:c1=pq+p+q=(q+1)(p+1)-1,
因為c>p>q,所以第二次得:c2=(c1+1)(p+1)-1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)-1,
所得新數(shù)大于任意舊數(shù),所以第三次可得c3=(c2+1)(c1+1)-1=(p+1)3(q+1)2-1,
第四次可得:c4=(c3+1)(c2-1)-1=(p+1)5(q+1)3-1,
故經(jīng)過10次擴充,所得數(shù)為:(q+1)55(p+1)89-1,
因為經(jīng)過6次操作后擴充所得的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),
所以m=55,n=89,
所以m+n=144.
故答案為:144
點評:本題考查新定義,考查學生的計算能力,考查學生分析解決問題的能力,求出經(jīng)過6次操作后擴充所得的數(shù)是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x|x|+x3+2在[-2013,2013]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=10,公差d=-2,則前n項和Sn的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

27 
2
3
+16 -
1
2
-(
1
2
-2-(
8
27
 -
2
3
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
x2345
y26394954
根據(jù)上表利用最小二乘法可得回歸方程
?
y
=
?
b
x+
?
a
,據(jù)此模型預報廣告費用為7萬元時銷售額為74.9萬元,則據(jù)此模型預報,廣告費每增加1萬元,銷售額大約增加( 。
A、9.1萬元B、9.4萬元
C、9.7萬元D、10萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增的等差數(shù)列{an}滿足:a1,a2,a4成等比數(shù)列,且a1=1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2(1+
1
an
)
,設Tn=b1+b2+…+bn,求數(shù)列{
1
2Tn2Tn+1
}
的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=1+
2x+1
2x+1
+sinx在區(qū)間[-k,k](k>0)上的值域為[m,n],則m+n=( 。
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=x2和直線y=0,x=1,y=
1
4
所圍成的封閉圖形的面積為(  )
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx),x∈R.
(1)求f(x)的最小正周期T和最大值M;
(2)若f(
α
2
+
π
8
)=-
1
3
,求cosα的值.

查看答案和解析>>

同步練習冊答案