已知函數(shù)f(x)=kx-
kx
-2lnx

(Ⅰ)若f'(2)=0,求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求實數(shù)k的取值范圍.
分析:(Ⅰ)根據(jù)題意,對f(x)求導,根據(jù)f'(2)=0,即可求得k的值,從而求的函數(shù)y=f(x)的解析式;
(Ⅱ)要使函數(shù)f(x)在其定義域內(nèi)為增函數(shù),只需函數(shù)f′(x)≥0在區(qū)間(0,+∞)上恒成立,即,kx2-2x+k≥0在區(qū)間(0,+∞)上恒成立,然后利用分離參數(shù)法,轉(zhuǎn)化為求函數(shù)的最值,即可求得實數(shù)k的取值范圍.
解答:解:f′(x)=k+
k
x2
-
2
x
=
kx2-2x+k
x2

由f'(2)=0,得k=
4
5
,
函數(shù)f(x)=
4
5
x-
4
5x
-2lnx

(Ⅱ)函數(shù)y=f(x)的定義域為(0,+∞),
要使函數(shù)f(x)在其定義域內(nèi)為增函數(shù),只需函數(shù)f′(x)≥0在區(qū)間(0,+∞)上恒成立,即,
kx2-2x+k≥0在區(qū)間(0,+∞)上恒成立,
即k≥
2x
x2+1
在區(qū)間(0,+∞)上恒成立,
令g(x)=
2x
x2+1
,x∈(0,+∞),
g(x)=
2x
x2+1
=
2
x+
1
x
≤1
,當且僅當x=1時取等號,
∴k≥1.
點評:此題是個中檔題.本題主要考查用導數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當函數(shù)為增函數(shù)時,導數(shù)大于等于零;當函數(shù)為減函數(shù)時,導數(shù)小于等于零,已知單調(diào)性求參數(shù)的范圍往往轉(zhuǎn)化為求相應函數(shù)的最值問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,很好的考查了學生的計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)函數(shù)f(x)=log3(x2-2x)的單調(diào)減區(qū)間為(-∞,1);
(2)已知P:|2x-3|>1,q:
1
x2+x-6
>0
,則p是q的必要不充分條件;
(3)命題“?x∈R,sinx≤
1
2
”的否定是:“?x∈R,sinx>”;
(4)已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0)
,y=f(x)的圖象與直線y=2的兩個相鄰交點的距離等于π,則y=f(x)的單調(diào)遞增區(qū)間是[kπ-
π
3
,kπ+
π
6
],k∈z
;
(5)用數(shù)學歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1);
其中所有正確的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)試求f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若數(shù)列{an}滿足an=f(0)+f(
1
n
)
+f(
2
n
)
+…+f(
n-1
n
)
+f(1)(n∈N*),求數(shù)列{an}的通項公式;
(3)若數(shù)列{bn}滿足bn=2n+1•an,Sn是數(shù)列{bn}前n項的和,是否存在正實數(shù)k,使不等式knSn>4bn對于一切的n∈N*恒成立?若存在指出k的取值范圍,并證明;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•黃浦區(qū)一模)已知函數(shù)f(x)=k+
x
,存在區(qū)間[a,b]⊆[0,+∞),使f(x)在[a,b]上的值域仍是[a,b],求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,g(x)=(3-k2)(logax+logxa),(其中a>1),設t=logax+logxa.
(Ⅰ)當x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當x∈(1,+∞)時,若存在x0∈(1,+∞),使f(x0)>g(x0)成立,試求k的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:吉林省模擬題 題型:單選題

已知函數(shù)f(x)=+k定義域為D,且方程f(x)=x在D上有兩個不等實根,則k的取值范圍是
[     ]
A.-1<k≤
B.≤k<1
C.k>-1
D.k<1

查看答案和解析>>

同步練習冊答案