19.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,則tanα=( 。
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

分析 根據(jù)同角的三角函數(shù)關(guān)系,進(jìn)行計(jì)算即可.

解答 解:$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$,
∴cosα<0
cosα=-$\sqrt{1{-sin}^{2}α}$=-$\sqrt{1{-(\frac{4}{5})}^{2}}$=-$\frac{3}{5}$
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$. 
故選:D.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)關(guān)系應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{|x|-{x}^{2}}$的定義域?yàn)閇-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,點(diǎn)P到兩點(diǎn)(0,-$\sqrt{2}$)、(0,$\sqrt{2}$)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求C的方程;
(2)過A(1,$\sqrt{2}$)作傾斜角互補(bǔ)的兩條直線分別與橢圓C交于異于A的另外兩點(diǎn)B,D,證明:直線BD的斜率為定值,并求出這個(gè)定值;
(3)在(2)的條件下,△ABD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=ln3x+ax+1(a∈R)的圖象在點(diǎn)($\frac{1}{3}$,f($\frac{1}{3}$))處的切線的傾斜角是$\frac{3π}{4}$,則a=( 。
A.-4B.4C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在△ABC中,∠B=$\frac{π}{6}$,AB=8$\sqrt{3}$,點(diǎn)D在BC邊上,且CD=2,cos∠ADC=$\frac{1}{7}$.
(1)求sin∠BAD;     
(2)求BD,AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)(x∈R)滿足f(2-x)=f(x),且當(dāng)x≥1時(shí),f(x)=lnx,則有( 。
A.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)B.f(2)<f($\frac{1}{2}$)<f($\frac{1}{3}$)C.f($\frac{1}{3}$)<f($\frac{1}{2}$)<f(2)D.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2t-1\\ y=-4t-2\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρ=\frac{2}{1-cosθ}$.
( I)求曲線C2的直角坐標(biāo)系方程;
( II)設(shè)M1是曲線C1上的點(diǎn),M2是曲線C2上的點(diǎn),求|M1M2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD.△PAD是正三角形,四邊形ABCD是直角梯形,AB∥CD,AD=CD=2AB,點(diǎn)E為PD中點(diǎn).
(I)證明:CD⊥平面PAD
(II)證明:平面PBC⊥平面PCD
(III)求二面角D-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$($θ∈[{-\frac{π}{2},\frac{π}{2}}]$,θ為參數(shù))若以坐標(biāo)系原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$θ=\frac{π}{4}$(ρ∈R).
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)將曲線C2向下平移m(m>0)個(gè)單位后得到的曲線恰與曲線C1有兩個(gè)公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案