如圖,邊長為2的正方形中,E是AB的中點,將它們沿EC、ED折起,使EA、EB重合,組成一個四面體,則這個四面體的體積為   
【答案】分析:這個四面體可以看成是以E點為頂點,以△ADC為底面的三棱錐,只要求出底面三角形面積,以及高的長度,再代入三棱錐的體積公式即可.
解答:解:∵△ADC的三邊分別為AB,AC,BC,∴AB=2,AC=2,BC=2

∵在正方形中,EA⊥AD,EB⊥BC,四面體中,EA、EB重合,
∴四面體中,EA⊥AD,EA⊥BC,∴EA⊥平面ADC
∴三棱錐E-ADC的高為EA,又∵EA=1

故答案為:
點評:本題考查了三棱錐體積公式的運用,其中涉及到折疊問題,一定要抓住折疊后的不變量.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是
 
;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當(dāng)頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•洛陽一模)如圖放置的邊長為1的正三角形ABC沿x軸的正方向滾動,設(shè)頂點A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x).則f(x)在兩個相鄰零點間的圖象與x軸圍成的面積是
3
+
3
4
3
+
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,過正方形ABCD的中心O作OP⊥平面ABCD,已知正方形的邊長為2,OP=2,連接AP、BP、CP、DP,M、N分別是AB、BC的中點,以O(shè)為原點,射線OM、ON、OP分別為Ox軸、Oy軸、Oz軸的正方向建立空間直角坐標(biāo)系.若E、F分別為PA、PB的中點,求A、B、C、D、E、F的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖放置的邊長為2的正方形PABC沿x軸滾動.設(shè)頂點P(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系是y=f(x),則f(x)的最小正周期為
 
;  y=f(x)在其兩個相鄰零點間的圖象與x軸所圍區(qū)域的面積為
 

(說明:“正方形PABC 沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當(dāng)頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù).類似地,正方形PABC可以沿x軸負(fù)方向滾動.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省四校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

如圖放置的邊長為1的正三角形PAB沿x軸滾動,設(shè)頂點A(x,y)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是y=f(x),則f(x)在區(qū)間[-2,1]上的解析式是    ;(說明:“正三角形PAB沿x軸滾動”包括沿x軸正方向和沿x軸負(fù)方向滾動.沿x軸正方向滾動指的是先以頂點A為中心順時針旋轉(zhuǎn),當(dāng)頂點B落在x軸上時,再以頂點B為中心順時針旋轉(zhuǎn),如此繼續(xù);類似地,正三角形PAB也可以沿x軸負(fù)方向逆時針滾動)

查看答案和解析>>

同步練習(xí)冊答案