【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/時).假設(shè)汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14元.

(1)求這次行車總費用y關(guān)于x的表達式;

(2)當x為何值時,這次行車的總費用最低,并求出最低費用的值.

【答案】(1) ,x[50,100];(2) 詳見解析.

【解析】試題分析:(1)由題意,總費用包含汽油價格和司機工資,所以可以寫出表達式x∈[50,100];(2)為對勾函數(shù),則當且僅當等號成立,解得

試題解析:

(1)設(shè)所用時間為,則

,

x∈[50,100].

所以這次行車總費用y關(guān)于x的表達式是

x∈[50,100].(或,x[50,100].

(2),

當且僅當,

時,等號成立.

故當千米/時,這次行車的總費用最低,最低費用的值為元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心坐標,直線被圓截得弦長為

(Ⅰ)求圓的方程;

(Ⅱ)從圓外一點向圓引切線,求切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠每日生產(chǎn)一種大型產(chǎn)品1件,每件產(chǎn)品的投入成本為2000元.產(chǎn)品質(zhì)量為一等品的概率為,二等品的概率為,每件一等品的出廠價為10000元,每件二等品的出廠價為8000元.若產(chǎn)品質(zhì)量不能達到一等品或二等品,除成本不能收回外,沒生產(chǎn)一件產(chǎn)品還會帶來1000元的損失.

(1)求在連續(xù)生產(chǎn)3天中,恰有一天生產(chǎn)的兩件產(chǎn)品都為一等品的的概率;

(2)已知該廠某日生產(chǎn)的2件產(chǎn)品中有一件為一等品,求另一件也為一等品的概率;

(3)求該廠每日生產(chǎn)該種產(chǎn)品所獲得的利潤(元)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)聯(lián)盟的自主招生考試中,報考文史專業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目語文數(shù)學(xué)的考試.某考場考生的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,本次考試中成績在內(nèi)的記為,其中語文科目成績在內(nèi)的考生有10人.

1)求該考場考生數(shù)學(xué)科目成績?yōu)?/span>的人數(shù);

2)已知參加本考場測試的考生中,恰有2人的兩科成績均為.在至少一科成績?yōu)?/span>的考生中,隨機抽取2人進行訪談,求這2人的兩科成績均為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0),記f[2](x)=f(f(x)),例:f(x)=x2+1,
則f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解關(guān)于x的方程f[2](x)=x;
(2)記△=(b﹣1)2﹣4ac,若f[2](x)=x有四個不相等的實數(shù)根,求△的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列給出四組函數(shù),表示同一函數(shù)的是(
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=2x+1,g(x)=2x﹣1
C.f(x)=|x|,g(x)=
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市100戶居民的月平均用電量(單位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖所示.

(1)求直方圖中x的值;

(2)求月平均用電量的眾數(shù)和中位數(shù);

(3)在月平均用電量為[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面分別為的中點, 是邊長為的正三角形, .

(1)證明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,設(shè)橢圓的焦點為,過右焦點的直線與橢圓相交于兩點,若的周長為短軸長的倍.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)的斜率為,在橢圓上是否存在一點,使得?若存在,求出點的坐標.

查看答案和解析>>

同步練習(xí)冊答案