【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2, 3x4﹣2,3x5﹣2的平均數(shù)和方差分別是

【答案】4,3
【解析】解:∵一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 , ∴另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù) =3×2﹣2=4,
方差S2= =3.
∴另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是4,3.
所以答案是:.
【考點精析】利用極差、方差與標(biāo)準(zhǔn)差對題目進(jìn)行判斷即可得到答案,需要熟知標(biāo)準(zhǔn)差和方差越大,數(shù)據(jù)的離散程度越大;標(biāo)準(zhǔn)差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標(biāo)準(zhǔn)差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,函數(shù) 的定義域為集合A,集合B={x|5≤x<7}
(1)求集合A;
(2)求(UB)∩A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x﹣3=0.
(1)求圓的圓心C的坐標(biāo)和半徑長;
(2)直線l經(jīng)過坐標(biāo)原點且不與y軸重合,l與圓C相交于A(x1 , y1)、B(x2 , y2)兩點,求證: 為定值;
(3)斜率為1的直線m與圓C相交于D、E兩點,求直線m的方程,使△CDE的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣2a|+a2﹣4a(a∈R). (Ⅰ)當(dāng)a=﹣1時,求f(x)在[﹣3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3個不相等的實根x1 , x2 , x3 , 求 + + 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y=cos(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象(
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(﹣4,4),且在(﹣4,0]上的圖象如圖所示,則關(guān)于x的不等式f(x)g(x)<0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高三年級不同性別的學(xué)生對取消藝術(shù)課的態(tài)度(支持或反對),進(jìn)行了如下的調(diào)查研究.全年級共有1350人,男女生比例為8:7,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為 ,通過對被抽取學(xué)生的問卷調(diào)查,得到如下2x2列聯(lián)表:

支持

反對

總計

男生

30

女生

25

總計

(Ⅰ)完成列聯(lián)表,并判斷能否有99.9%的把握認(rèn)為態(tài)度與性別有關(guān)?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反對;有4名女生被抽到,其中2人支持,2人反對,現(xiàn)從這10人中隨機(jī)抽取一男一女進(jìn)一步調(diào)查原因.求其中恰有一人支持一人反對的概率.
參考公式及臨界表:K2=

P(K2≥k0

0.10

0.050

0.010

0.005

0.001

k0

2.706%

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府落實黨中央“精準(zhǔn)扶貧”政策,解決一貧困山村的人畜用水困難,擬修建一個底面為正方形(由地形限制邊長不超過10m)的無蓋長方體蓄水池,設(shè)計蓄水量為800m3 . 已知底面造價為160元/m2 , 側(cè)面造價為100元/m2 . (I)將蓄水池總造價f(x)(單位:元)表示為底面邊長x(單位:m)的函數(shù);
(II)運用函數(shù)的單調(diào)性定義及相關(guān)知識,求蓄水池總造價f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AA1=AB=AC,BC= AB,且AA1⊥平面ABC,點M、Q分別是BC、CC1的中點,點P是棱A1B1上的任一點.

(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ= ,試確定點P在棱A1B1上的位置,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案