【題目】某地政府落實黨中央“精準扶貧”政策,解決一貧困山村的人畜用水困難,擬修建一個底面為正方形(由地形限制邊長不超過10m)的無蓋長方體蓄水池,設(shè)計蓄水量為800m3 . 已知底面造價為160元/m2 , 側(cè)面造價為100元/m2 . (I)將蓄水池總造價f(x)(單位:元)表示為底面邊長x(單位:m)的函數(shù);
(II)運用函數(shù)的單調(diào)性定義及相關(guān)知識,求蓄水池總造價f(x)的最小值.
【答案】解:(Ⅰ)設(shè)蓄水池高為h,則 ,
∴
=
(Ⅱ)任取x1,x2∈(0,10],且x1<x2,則
=
∵0<x1<x2≤10,∴x1x2>0,x1﹣x2<0,x1x2(x1+x2)<2000,
∴y=f(x1)﹣f(x2),即f(x1)>f(x2),∴y=f(x)在x∈(0,10]上單調(diào)遞減
故x=10當時,fmin(x)=f(10)=48000
答:當?shù)酌孢呴L為10m時,蓄水池最低造價為48000元
【解析】(I)設(shè)蓄水池高為h,則 ,利用底面造價為160元/m2,側(cè)面造價為100元/m2,即可將蓄水池總造價f(x)(單位:元)表示為底面邊長x(單位:m)的函數(shù);(II)確定y=f(x)在x∈(0,10]上單調(diào)遞減,即可求蓄水池總造價f(x)的最小值.
【考點精析】本題主要考查了基本不等式在最值問題中的應(yīng)用的相關(guān)知識點,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,若其圖象向左平移 個單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點( ,0)對稱
B.關(guān)于點(﹣ ,0)對稱
C.關(guān)于直線x=﹣ 對稱
D.關(guān)于直線x= 對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2, 3x4﹣2,3x5﹣2的平均數(shù)和方差分別是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記[x]表示不超過x的最大整數(shù),如[1.2]=1,[0.5]=0,則方程[x]﹣x=lnx的實數(shù)根的個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,g(x)=loga(x+2a)+loga(4a﹣x),其中a>0,且a≠1.
(1)求f(x)的定義域,并判斷f(x)的奇偶性;
(2)已知區(qū)間D=[2a+1,2a+ ]滿足3aD,設(shè)函數(shù)h(x)=f(x)+g(x),h(x)的定義域為D,若對任意x∈D,不等式|h(x)|≤2恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京市為了緩解交通壓力,計劃在某路段實施“交通限行”,為調(diào)查公眾對該路段“交通限行”的態(tài)度,某機構(gòu)從經(jīng)過該路段的人員中隨機抽查了80人進行調(diào)查,將調(diào)查情況進行整理,制成表:
年齡(歲) | [15,30) | [30,45) | [45,60) | [60,75) |
人數(shù) | 24 | 26 | 16 | 14 |
贊成人數(shù) | 12 | 14 | x | 3 |
(1)若經(jīng)過該路段的人員對“交通限行”的贊成率為0.40,求x的值;
(2)在(1)的條件下,若從年齡在[45,60),[60,75)內(nèi)的兩組贊成“交通限行”的人中在隨機選取2人進行進一步的采訪,求選中的2人中至少有1人來自[60,75)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( )x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1﹣x2),則關(guān)于函數(shù)y=h(x)的下列4個結(jié)論: ①函數(shù)y=h(x)的圖象關(guān)于原點對稱;
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號為 . (將你認為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=b+logax(x>0且a≠1)的圖象經(jīng)過點(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求實數(shù)x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點M,使AE∥平面FDM,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com