分析 在①中,由BC∥DE,知∠ABC(或其補(bǔ)角)為AB與DE所成角,由此能求出AB與DE所成角的正切值為$\sqrt{2}$;在②中,由翻折后的圖形知AB與CE是異面直線;在③中,VB-ACE=$\frac{1}{6}{a}^{3}$;在④中,由AD⊥平面BCDE,知AD⊥BC,又BC⊥CD,由此推導(dǎo)出平面ABC⊥平面ADC.
解答 解:∵正方形BCDE的邊長(zhǎng)為a,已知$AB=\sqrt{3}BC$,將△ABE沿BE邊折起,
折起后A點(diǎn)在平面BCDE上的射影為D點(diǎn),
∴$AB=\sqrt{3}BC$=$\sqrt{3}a$,AE=$\sqrt{2}a$,AD⊥平面BCDE,AD=a,AC=$\sqrt{2}a$,
在①中,∵BC∥DE,∴∠ABC(或其補(bǔ)角)為AB與DE所成角,
∵AB=$\sqrt{3}a$,BC=a,AC=$\sqrt{2}a$,∴BC⊥AC,
∴tan∠ABC=$\sqrt{2}$,∴AB與DE所成角的正切值為$\sqrt{2}$,故①正確;
在②中,由翻折后的圖形知AB與CE是異面直線,故②錯(cuò)誤;
在③中,${V}_{B_ACE}=\frac{1}{3}{S}_{△BCE}×AD=\frac{1}{3}×\frac{1}{2}{a}^{3}$=$\frac{1}{6}{a}^{3}$,故③錯(cuò)誤;
在④中,∵AD⊥平面BCDE,BC?平面ABC,
∴AD⊥BC,又BC⊥CD,AD∩CD=D,
∴BC?平面ADC,又BC?平面ABC,
∴平面ABC⊥平面ADC,故④正確.
故答案為:①④.
點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2) | B. | (2,3) | C. | (-1,3) | D. | (-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $C_7^2A_3^2$ | B. | $C_7^2A_5^5$ | C. | $C_7^2A_5^2$ | D. | $C_7^2A_4^2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1 | B. | -$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com