已知函數(shù)f(x)=
a-x
x-a-1
的反函數(shù)f-1(x)的圖象對稱中心是(-1,
3
2
),則函數(shù)h(x)=loga(x2-2x)的單調(diào)遞增區(qū)間是(  )
分析:根據(jù)反函數(shù)f-1(x)的圖象對稱中心求出f(x)的對稱中心,根據(jù)復(fù)合函數(shù)的單調(diào)性遵循:同增異減,求出復(fù)合函數(shù)h(x)=loga(x2-2x)的單調(diào)遞增區(qū)間.
解答:解:因為f(x)=
a-x
x-a-1
的反函數(shù)f-1(x)的圖象對稱中心是(-1,
3
2
),
所以f(x)關(guān)于(
3
2
,-1)
對稱,
因為f(x)=-1-
1
x-a-1

所以a+1=
3
2

所以a=
1
2

所以h(x)=loga(x2-2x)=log
1
2
(x2-2x)

h(x)的定義域為{x|x>2或x<0}
令t=x2-2x=(x-1)2-1在(2,+∞)遞增;在(-∞,0)遞減;
因為y=log
1
2
t
為減函數(shù),
所以函數(shù)h(x)=loga(x2-2x)的單調(diào)遞增區(qū)間是(-∞,0)
故選C.
點評:本題考查復(fù)合函數(shù)的單調(diào)性:遵循同增異減;考查互為反函數(shù)關(guān)于y=x對稱,其對稱中心也關(guān)于y=x對稱.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當(dāng)f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標(biāo)系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=( 。
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案