【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x.
(1)求f( )的值;
(2)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.
【答案】
(1)解:函數(shù)f(x)=cos(2x﹣ )﹣cos2x,
∴f( )=cos( ﹣ )﹣cos = ﹣(﹣ )=1;
(2)解:函數(shù)f(x)=cos(2x﹣ )﹣cos2x
=cos2xcos +sin2xsin ﹣cos2x
= sin2x﹣ cos2x
=sin(2x﹣ );
∴函數(shù)f(x)的最小正周期為T= =π;
由y=sinx的單調(diào)遞增區(qū)間是[2kπ﹣ ,2kπ+ ],(k∈Z);
令2kπ﹣ ≤2x﹣ ≤2kπ+ ,k∈Z,
解得kπ﹣ ≤x≤kπ+ ;
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ﹣ ,kπ+ ],(k∈Z)
【解析】(1)根據(jù)函數(shù)f(x)的解析式,計(jì)算f( )的值即可;(2)化函數(shù)f(x)為正弦型函數(shù),即可求出它的最小正周期與單調(diào)遞增區(qū)間.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=( )
A.4
B.5
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓的右焦點(diǎn)F作兩條相互垂直的直線分別交橢圓于A,B,C,D四點(diǎn),則的值為( )
A. B. C. 1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.
【答案】(I)見解析; (Ⅱ)見解析.
【解析】分析:(I)依題意可得甲公司一名推銷員的工資與銷售件數(shù)的關(guān)系是一次函數(shù)的關(guān)系式,而乙公司是分段函數(shù)的關(guān)系式,由此解得;(Ⅱ)分別根據(jù)條形圖求得甲、乙公司一名推銷員的日工資的分布列,從而可分別求得數(shù)學(xué)期望,進(jìn)而可得結(jié)論.
詳解:(I)由題意得,甲公司一名推銷員的日工資 (單位:元) 與銷售件數(shù)的關(guān)系式為: .
乙公司一名推銷員的日工資 (單位: 元) 與銷售件數(shù)的關(guān)系式為:
(Ⅱ)記甲公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
122 | 124 | 126 | 128 | 130 | |
0.2 | 0.4 | 0.2 | 0.1 | 0.1 |
記乙公司一名推銷員的日工資為 (單位: 元),由條形圖可得的分布列為
120 | 128 | 144 | 160 | |
0.2 | 0.3 | 0.4 | 0.1 |
∴
∴僅從日均收入的角度考慮,我會(huì)選擇去乙公司.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
第一步是“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
第二步是“探求概率”,即利用排列組合,枚舉法,概率公式,求出隨機(jī)變量取每個(gè)值時(shí)的概率;
第三步是“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
第四步是“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值
【題型】解答題
【結(jié)束】
19
【題目】如圖,在四棱錐中,底面為菱形, 平面, , , , 分別是, 的中點(diǎn).
(1)證明: ;
(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長的最小值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽.a,b∈R,若此函數(shù)同時(shí)滿足:
①當(dāng)a+b=0時(shí),有f(a)+f(b)=0;
②當(dāng)a+b>0時(shí),有f(a)+f(b)>0,
則稱函數(shù)f(x)為Ω函數(shù).
在下列函數(shù)中:
①y=x+sinx;
②y=3x﹣( )x;
③y=
是Ω函數(shù)的為 . (填出所有符合要求的函數(shù)序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解不等式;
(2)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若函數(shù),其中為奇函數(shù),為偶函數(shù),若不等式對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點(diǎn)P在直線l上,過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若點(diǎn)P的橫坐標(biāo)為1,求切線PA,PB的方程;
(2)若點(diǎn)P的縱坐標(biāo)為a,且在圓M上存在點(diǎn)Q到點(diǎn)P的距離為1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的兩個(gè)零點(diǎn)為,,且.
(Ⅰ)求的取值范圍;
(Ⅱ)若,且函數(shù)在區(qū)間上的最大值為,試判斷點(diǎn)是否在直線上? 并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)競賽中,30名參賽學(xué)生的成績(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績由高到低編為1﹣30號(hào),再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績在[77,90]內(nèi)的學(xué)生人數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com