已知雙曲線-=1的一個(gè)焦點(diǎn)與圓x2+y2-10x=0的圓心重合,且雙曲線的離心率等于,則該雙曲線的標(biāo)準(zhǔn)方程為    . 


- =1

解析:圓x2+y2-10x=0的圓心坐標(biāo)為(5,0),

∴c=5,

又e==,

∴a=,b2=c2-a2=20,

∴雙曲線標(biāo)準(zhǔn)方程為-=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


若P=+,Q=+(a≥0),則P、Q的大小關(guān)系是(  )

(A)P>Q  (B)P=Q

(C)P<Q  (D)由a的取值確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知F是雙曲線-=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)雙曲線-=1(a>0,b>0)的虛軸長(zhǎng)為2,焦距為2,則雙曲線的漸近線方程為(  )

(A)y=±x (B)y=±2x   (C)y=±x     (D)y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系xOy中,若雙曲線-=1的離心率為,則m的值為    . 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


雙曲線的中心在坐標(biāo)原點(diǎn)O,A、C分別是雙曲線虛軸的上、下頂點(diǎn),B是雙曲線的左頂點(diǎn),F是雙曲線的左焦點(diǎn),直線AB與FC相交于點(diǎn)D,若雙曲線的離心率為2,則∠BDF的余弦值是(  )

(A) (B)    (C)    (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知△ABC外接圓半徑R=,且∠ABC=120°,BC=10,邊BC在x軸上且y軸垂直平分BC邊,則過點(diǎn)A且以B,C為焦點(diǎn)的雙曲線方程為(  )

(A) -=1  (B) -=1

(C) - =1 (D) -=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C: +=1(a>b>0)的焦距為4,且過點(diǎn)P(,).

(1)求橢圓C的方程;

(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

 (1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;

(2)若|AF|2=|AM|·|AN|,求圓C的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案