已知f(x)=-ax(0<a<1),若x1,x2∈R且x1≠x2,則( 。
A、f(
x1+x2
2
)=
f(x1)+f(x2)
2
B、f(
x1+x2
2
)>
f(x1)+f(x2)
2
C、f(
x1+x2
2
)<
f(x1)+f(x2)
2
D、f(
x1+x2
2
)與
f(x1)+f(x2)
2
的大小不確定
分析:本題考查函數(shù)圖象的變化規(guī)律,故可以做出函數(shù)的圖象,根據(jù)圖象作出判斷找出正確選項
解答:解:f(x)=-ax(0<a<1),圖象如下圖,其中M(
x1+x2
2
,
f(x1)+f(x2)
2
),N(
x1+x2
2
,f(
x1+x2
2
)

由圖知f(
x1+x2
2
)>
f(x1)+f(x2)
2

故選B
精英家教網(wǎng)
點評:本題考查指數(shù)函數(shù)的圖象與性質(zhì),解題的關(guān)鍵是理解函數(shù)圖象的變化規(guī)律,比較出兩數(shù)的大小,此類題做題很重要
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關(guān)于y軸對稱;
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(3)當x∈[1,2]時函數(shù)f (x )的最大值為
103
,求此時a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax+b(a>0且a≠1,b為常數(shù))的圖象經(jīng)過點(1,1)且0<f(0)<1,記m=
1
2
[f-1(x1)+f-1(x2)]
,n=f-1(
x1+x2
2
)
(x1、x2是兩個不相等的正實數(shù)),試比較m、n的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設(shè)函數(shù)f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax(a>1),g(x)=bx(b>1),當f(x1)=g(x2)=2時,有x1>x2,則a,b的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對數(shù)的底,a∈R.
(Ⅰ)a=1時,求f(x)的單調(diào)區(qū)間、極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

同步練習冊答案