1.已知向量$\overrightarrow{a}$=(1+sin2x,sinx-cosx),$\overrightarrow$=(1,sinx+cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應(yīng)的x的集合.

分析 (1)利用平面向量數(shù)量積的坐標運算化簡函數(shù)f(x),結(jié)合三角恒等變換即可求出f(x)的最小正周期,
(2)利用正弦函數(shù)的圖象與性質(zhì)即可求出f(x)的最大值及取得最大值相應(yīng)的x的集合.

解答 解:f(x)=$\overrightarrow{a}$•$\overrightarrow$
=(1+sin2x)+(sin2x-cos2x)
=1+sin2x-(cos2x-sin2x)
=1+sin2x-cos2x
=$\sqrt{2}sin(2x-\frac{π}{4})+1$;
(1)f(x)的最小正周期為$T=\frac{2π}{2}=π$;
(2)當sin(2x-$\frac{π}{4}$)=1時,f(x)取得最大值為$f{(x)_{max}}=\sqrt{2}+1$;
由$2x-\frac{π}{4}=\frac{π}{2}+2kπ,k∈Z$,得$2x=\frac{3π}{4}+2kπ,k∈Z$,
即$x=\frac{3π}{8}+kπ,k∈Z$;
所以f(x)取得最大值時x的集合為$\{x|x=\frac{3π}{8}+kπ,k∈Z\}$.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查了平面向量的數(shù)量積與三角恒等變換的應(yīng)用問題,是中檔題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系中,曲線C1的參數(shù)方程$\left\{\begin{array}{l}x=3cosφ\\ y=2sinφ\end{array}$(φ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經(jīng)過極點的圓,射線θ=$\frac{π}{3}$與曲線C2交于點D(4,$\frac{π}{3}}$).
(1)求曲線C1的普通方程及C2的直角坐標方程;
(2)在極坐標系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}}$)是曲線C1上的兩點,求$\frac{1}{ρ_1^2}+\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=1-2sin2(x+$\frac{π}{4}$)是( 。
A.最小正周期為π的偶函數(shù)B.最小正周期為π的奇函數(shù)
C.最小正周期為2π的偶函數(shù)D.最小正周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若直線x=m(m>1)與函數(shù)f(x)=logax,g(x)=logbx的圖象及x軸分別交于A,B,C三點.若|AB|=2|BC,則|( 。
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在平面直角坐標系中,橢圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),已知以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,射線l的極坐標方程為θ=α(ρ≥0)(注:本題限定:ρ≥0,θ∈[0,2π))
(1)把橢圓C的參數(shù)方程化為極坐標方程;
(2)設(shè)射線l與橢圓C相交于點A,然后再把射線l逆時針90°,得到射線OB與橢圓C相交于點B,試確定$\frac{1}{{{{|{OA}|}^2}}}+\frac{1}{{{{|{OB}|}^2}}}$是否為定值,若為定值求出此定值,若不為定值請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.直角坐標系xOy中,l是過定點M(1,2)且傾斜角為α的直線,在以直角坐標系原點O為極點,x軸非負半軸為極軸,取相同的單位長度的極坐標系中,曲線C的極坐標方程為ρ=2sinθ.
(1)請寫出直線l的參數(shù)方程和曲線C的直角坐標方程;
(2)若直線l與曲線C有兩個不同交點A,B,Q為弦AB的中點,求|MQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=2sinxcosx+sin(2x+$\frac{π}{2}$).
(1)若x∈R,求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當x∈[0,$\frac{π}{3}$]求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在直角坐標系xOy中,將曲線C1:$\left\{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù))上所有點橫坐標變?yōu)樵瓉淼?倍得到曲線C2,將曲線C1向上平移一個單位得到曲線C3,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求曲線C2的普通方程及曲線C3的極坐標方程;
(Ⅱ)若點P是曲線C2上任意一點,點Q是曲線C3上任意一點,求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知M為拋物線y2=4x上的一點,點M到直線4x-3y+8=0的距離為d1;點M到y(tǒng)軸距離為d2.則d1+d2的最小值為$\frac{7}{5}$.

查看答案和解析>>

同步練習冊答案