定義在R上的函數(shù),,當(dāng)時(shí),,且對(duì)任意實(shí)數(shù),
有,
求證:;
(2)證明:是R上的增函數(shù);
(3)若,求的取值范圍。
(1)a=b=0,得f(0)=1。
(2)任取x2>x1,則f(x2)>0,f(x1)>0,x2-x1>0
利用 得到 f(x2)>f(x1) 。
(3)0<x<3
解析試題分析:(1)令a=b=0,則f(0)=[f(0)]2∵ f(0)≠0 ∴ f(0)=1 4
(2)任取x2>x1,則f(x2)>0,f(x1)>0,x2-x1>0
∴ ∴ f(x2)>f(x1) ∴ f(x)在R上是增函數(shù)
8
(3)f(x)·f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x) 又1=f(0),f(x)在R上遞增
∴ 由f(3x-x2)>f(0)得:x-x2>0 ∴ 0<x<3 12
考點(diǎn):函數(shù)的單調(diào)性,抽象函數(shù)不等式的解法,一元二次不等式的解法,賦值法。
點(diǎn)評(píng):中檔題,本題作為一道“連環(huán)題”,可采用分步得分的原則,首先利用“賦值法”解題。本題主要難點(diǎn)是配湊。抽象函數(shù)不等式的解法,主要是利用函數(shù)的單調(diào)性,轉(zhuǎn)化成具體不等式求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果函數(shù)f(x)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/51/c/vxwsn2.png" style="vertical-align:middle;" />,且f(x)為增函數(shù),f(xy)=f(x)+f(y)。
(1)證明:;
(2)已知f(3)=1,且f(a)>f(a-1)+2,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛130千米(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)14元.
(Ⅰ)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)p:函數(shù)y=loga(x+1)(a>0且a≠1)在(0,+∞)上單調(diào)遞減; q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷活動(dòng).
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場(chǎng)對(duì)選出的A商品采用的促銷方案是有獎(jiǎng)銷售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高90元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的,請(qǐng)問:商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷方案對(duì)自己有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
養(yǎng)路處建造無底的圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12米,高4米。養(yǎng)路處擬另建一個(gè)更大的圓錐形倉庫,以存放更多食鹽。現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來增加4米(高不變);二是高度增加4米(底面直徑不變)。
分別計(jì)算按這兩種方案所建的倉庫的體積;
分別計(jì)算按這兩種方案所建的倉庫的表面積;
哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
將52名志愿者分成A,B兩組參加義務(wù)植樹活動(dòng),A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗.假定A,B兩組同時(shí)開始種植.
(1)根據(jù)歷年統(tǒng)計(jì),每名志愿者種植一捆白楊樹苗用時(shí)小時(shí),種植一捆沙棘樹苗用時(shí)小時(shí).應(yīng)如何分配A,B兩組的人數(shù),使植樹活動(dòng)持續(xù)時(shí)間最短?
(2)在按(1)分配的人數(shù)種植1小時(shí)后發(fā)現(xiàn),每名志愿者種植一捆白楊樹苗用時(shí)仍為小時(shí),而每名志愿者種植一捆沙棘樹苗實(shí)際用時(shí)小時(shí),于是從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動(dòng)所持續(xù)的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com